【題目】如圖,已知,現(xiàn)將一直角三角形放入圖中,其中,交于點,交于點.
(1)當所放位置如圖一所示時,則與的數量關系為 ;
(2)當所放位置如圖二所示時,試說明:;
(3)在(2)的條件下,若與交于點,且,,求的度數.
【答案】(1);(2)詳見解析;(3)45°
【解析】
(1)由平行線性質得出∠1=∠PFD,∠2=∠AEM,據此進一步求解即可;
(2)由平行線性質可得∠PFD+∠BHF=180°,再根據角的互余關系進一步證明即可;
(3)根據角的互余關系得出∠PHE,再根據平行線性質得出∠PFC度數,然后根據三角形外角性質進一步求解即可.
(1)如圖所示,作PG∥AB,則PG∥CD,
∴∠1=∠PFD,∠2=∠AEM,
∵∠1+∠2=∠P=90°,
∴,
故答案為:;
(2)如圖所示,
∵AB∥CD,
∴∠PFD+∠BHF=180°,
∵∠P=90°,
∴∠BHF+∠PEB=90°,
∵∠PEB=∠AEM,
∴∠BHF=∠PHE=90°∠AEM,
∴∠PFD+90°∠AEM=180°,
∴∠PFD∠AEM=90°
(3)如圖所示,
∵∠P=90°,
∴∠PHE=90°∠FEB=75°,
∵AB∥CD,
∴∠PFC=∠PHE=75°,
∵∠PFC=∠N+∠DON,
∴∠N=75°30°=45°.
科目:初中數學 來源: 題型:
【題目】(2017江蘇省宿遷市,第25題,10分)如圖,在平面直角坐標系xOy中,拋物線交x軸于A,B兩點(點A在點B的左側),將該拋物線位于x軸上方曲線記作M,將該拋物線位于x軸下方部分沿x軸翻折,翻折后所得曲線記作N,曲線N交y軸于點C,連接AC、BC.
(1)求曲線N所在拋物線相應的函數表達式;
(2)求△ABC外接圓的半徑;
(3)點P為曲線M或曲線N上的一動點,點Q為x軸上的一個動點,若以點B,C,P,Q為頂點的四邊形是平行四邊形,求點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正確結論的是( )
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC邊上的一個動點,將△ABD沿BD所在直線折疊,使點A落在點P處.
(1)如圖1,若點D是AC中點,連接PC.
①寫出BP,BD的長;
②求證:四邊形BCPD是平行四邊形.
(2)如圖2,若BD=AD,過點P作PH⊥BC交BC的延長線于點H,求PH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數.(請在下面的空格處填寫理由或數學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內角互補)
∵ ,(已知)
∴∠AGD= (等式性質)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩個大小一樣的直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=10,DH=4,平移距離為6,則陰影部分面積是_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某運輸部門規(guī)定:辦理托運,當一種物品的重量不超過16千克時,需付基礎費30元和保險費a元:為限制過重物品的托運,當一件物品超過16千克時,除了付以上基礎費和保險費外,超過部分每千克還需付b元超重費.設某件物品的重量為x千克.
(1)當x≤16時,支付費用為__________________元(用含a的代數式表示);
當x≥16時,支付費用為_________________元(用含x和a、b的代數式表示);
(2)甲、乙兩人各托運一件物品,物品重量和支付費用如下表所示
物品重量(千克) | 支付費用(元) |
18 | 39 |
25 | 53 |
試根據以上提供的信息確定a,b的值.
(3)根據這個規(guī)定,若丙要托運一件超過16千克的物品,但支付的費用不想超過70元,那么丙托運的物品最多是多少千克.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:
如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.
(1)證明:AD=BE;
(2)求∠AEB的度數.
問題變式:
(3)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.(Ⅰ)請求出∠AEB的度數;(Ⅱ)判斷線段CM、AE、BE之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義運算ab=a(1-b),下面給出了關于這種運算的四個結論:
①2(-2)=6 ②ab=ba
③若a+b=0,則(aa)+(bb)=2ab ④若ab=0,則a=0.
其中正確結論的序號是 (填上你認為所有正確結論的序號).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com