【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了全等三角形的對應角相等這一性質(zhì),其全等的依據(jù)是( )

ASAS BASA CAAS DSSS

【答案】D

【解析】

試題本題考查的關(guān)鍵是作角的過程作角過程中所產(chǎn)生的條件就是證明全等的條件根據(jù)用直尺和圓規(guī)畫一個角等于已知角的過程很容易看出所得兩個三角形三邊對應相等

設已知角為O,以頂點O為圓心,任意長為半徑畫弧交角的兩邊分別為A,B兩點;

畫一條射線b,端點為M;

以M為圓心,OA長為半徑畫弧,交射線b于C點;以C為圓心,AB長為半徑畫弧,兩弧交于點D;

作射線MD

COD就是所求的角

由以上過程不難看出兩個三角形中有三條邊對應相等,

證明全等的方法是SSS

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙A與y軸相切于點B(0, ),與x軸相交于M,N兩點,如果點M的坐標為( ,0),求點N的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)市衛(wèi)生防疫部門的要求,游泳池必須定期換水后才能對外開放.在換水時需要經(jīng)“排水—清冼—灌水”的過程.某游泳館從早上7:00開始對游泳池進行換水,已知該游泳池的排水速度是灌水速度的1.6倍,其中游泳池內(nèi)剩余的水量y(m3)與換水時間x(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)填空:該游泳池清洗需要   小時;

(2)求排水過程中的y(m3)x(h)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)若該游泳館在換水結(jié)束后30分鐘才能對外開放,試問游泳愛好者小明能否在中午12:40進入該游泳館游泳?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】麒麟?yún)^(qū)第七中學現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計劃在空地上種草皮,經(jīng)測量,∠B=90°,AB=3mBC=4m,CD=13m,AD=12m

1)求出空地ABCD的面積?

2)若每種植1平方米草皮需要300元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球運球是中考體育必考項目之一蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.

根據(jù)所給信息,解答以下問題

1)本次一共抽取了   名九年級學生;

2)補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是   度;

4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,方格圖中每個小正方形的邊長為1,點A、B、C都是格點.

(1)畫出△ABC關(guān)于直線MN對稱的△A1B1C1;

(2)直接寫出AA1的長度;

(3)如圖2,A、C是直線MN同側(cè)固定的點,D是直線MN上的一個動點,在直線MN上畫出點D,使AD+DC最。ūA糇鲌D痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、,求此三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上:   

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別a、a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“永定樓”是門頭溝區(qū)的地標性建筑,某中學九年級數(shù)學興趣小組進行了測量它高度的社會實踐活動.如圖,他們在A點測得頂端D的仰角∠DAC=30°,向前走了46米到達B點后,在B點測得頂端D的仰角∠DBC=45°.求永定樓的高度CD.(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案