【題目】如圖,已知正方形ABCD的邊長是4,點(diǎn)E是AB邊上一動點(diǎn),連接CE,過點(diǎn)B作BG⊥CE于點(diǎn)G,點(diǎn)P是AB邊上另一動點(diǎn),則PD+PG的最小值為_____.
【答案】2-2
【解析】作DC關(guān)于AB的對稱點(diǎn)D′C′,以BC中的O為圓心作半圓O,連D′O分別交AB及半圓O于P、G.將PD+PG轉(zhuǎn)化為D′G找到最小值.
取點(diǎn)D關(guān)于直線AB的對稱點(diǎn)D′,以BC中點(diǎn)O為圓心,OB為半徑畫半圓,
連接OD′交AB于點(diǎn)P,交半圓O于點(diǎn)G,連BG,連CG并延長交AB于點(diǎn)E,
由以上作圖可知,BG⊥EC于G,
PD+PG=PD′+PG=D′G,
由兩點(diǎn)之間線段最短可知,此時(shí)PD+PG最小,
∵D′C=4,OC′=6,
∴D′O=,
∴D′G=-2,
∴PD+PG的最小值為-2,
故答案為:-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動,且始終保持AD=CE.連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試證明△DFE是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)隨的增大而增大,那么反比例函數(shù)的關(guān)系式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCO中,AO=3,tan∠ACB=,以O(shè)為坐標(biāo)原點(diǎn),OC為軸,OA為軸建立平面直角坐標(biāo)系。設(shè)D,E分別是線段AC,OC上的動點(diǎn),它們同時(shí)出發(fā),點(diǎn)D以每秒3個(gè)單位的速度從點(diǎn)A向點(diǎn)C運(yùn)動,點(diǎn)E以每秒1個(gè)單位的速度從點(diǎn)C向點(diǎn)O運(yùn)動,設(shè)運(yùn)動時(shí)間為秒。
(1)求直線AC的解析式;
(2)用含的代數(shù)式表示點(diǎn)D的坐標(biāo);
(3)當(dāng)為何值時(shí),△ODE為直角三角形?
(4)在什么條件下,以Rt△ODE的三個(gè)頂點(diǎn)能確定一條對稱軸平行于軸的拋物線?并請選擇一種情況,求出所確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時(shí)針方向旋轉(zhuǎn)40°得到△ADE,點(diǎn)B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。
A. π﹣6 B. π C. π﹣3 D. +π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列應(yīng)用題:
⑴某房間的面積為17.6m2,房間地面恰好由110塊相同的正方形地磚鋪成,每塊地磚的邊長是多少?
⑵已知第一個(gè)正方體水箱的棱長是60cm,第二個(gè)正方體水箱的體積比第一個(gè)水箱的體積的3倍還多81000 cm3,則第二個(gè)水箱需要鐵皮多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(觀察)
,,,……,,,,,,……,,,.
(發(fā)現(xiàn))
根據(jù)你的閱讀回答問題:
(1)上述內(nèi)容中,兩數(shù)相乘,積的最大值為______;
(2)設(shè)參與上述運(yùn)算的第一個(gè)因數(shù)為,第二個(gè)因數(shù)為,用等式表示與的數(shù)量關(guān)系是____.
(類比)
觀察下列兩數(shù)的積:1×49,2×48,3×47,4×46,……m×n,……46×4,47×3,48×2,49×1
猜想的最大值為_______,并用你學(xué)過的知識加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景介紹)勾股定理是幾何學(xué)中的明珠,充滿著魅力.千百年來,人們對它的證明趨之若騖,其中有著名的數(shù)學(xué)家,也有業(yè)余數(shù)學(xué)愛好者.向常春在1994年構(gòu)造發(fā)現(xiàn)了一個(gè)新的證法.
(小試牛刀)把兩個(gè)全等的直角三角形如圖1放置,其三邊長分別為a、b、c.顯然,∠DAB=∠B=90°,AC⊥DE.請用a、b、c分別表示出梯形ABCD、四邊形AECD、△EBC的面積,再探究這三個(gè)圖形面積之間的關(guān)系,可得到勾股定理:
S梯形ABCD= ,
S△EBC= ,
S四邊形AECD= ,
則它們滿足的關(guān)系式為 ,經(jīng)化簡,可得到勾股定理.
(知識運(yùn)用)(1)如圖2,鐵路上A、B兩點(diǎn)(看作直線上的兩點(diǎn))相距40千米,C、D為兩個(gè)村莊(看作兩個(gè)點(diǎn)),AD⊥AB,BC⊥AB,垂足分別為A、B,AD=25千米,BC=16千米,則兩個(gè)村莊的距離為 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一個(gè)供應(yīng)站P,使得PC=PD,請用尺規(guī)作圖在圖2中作出P點(diǎn)的位置并求出AP的距離.
(知識遷移)借助上面的思考過程與幾何模型,求代數(shù)式最小值(0<x<16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩直線l1:y=kx﹣2b+1和l2:y=(1﹣k)x+b﹣1交于x軸上一點(diǎn)A,與y軸分別交于點(diǎn)B、C,若A的橫坐標(biāo)為2.
(1)求這兩條直線的解析式;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com