【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
【答案】(1)b=﹣2a,頂點D的坐標為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點坐標代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標;
(2)把點代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點N的坐標,根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當GH與拋物線只有一個公共點時,t的值,再確定當線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.
試題解析:(1)∵拋物線有一個公共點M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點D的坐標為
(2)∵直線y=2x+m經(jīng)過點M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點坐標為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對稱軸交直線于點E,
∵拋物線對稱軸為
設(shè)△DMN的面積為S,
(3)當a=1時,
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點G、H關(guān)于原點對稱,
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當點H平移后落在拋物線上時,坐標為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當線段GH與拋物線有兩個不同的公共點,t的取值范圍是
【題型】解答題
【結(jié)束】
24
【題目】在△ABC中,AB=AC,點D是直線BC上的一點(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE,設(shè)∠BAC=α,∠BCE=β.
(1)如圖①,當點D在線段BC上,如果α=60°,β=120°;
如圖②,當點D在線段BC上,如果α=90°,β=90°
如圖③,當點D在線段BC上,如果α,β之間有什么樣的關(guān)系?請直接寫出.
(2)如圖④,當點D在射線BC上,(1)中結(jié)論是否成立?請說明理由.
(3)如圖⑤,當點D在射線CB上,且在線段BC外,(1)中結(jié)論是否成立?若不成立,請直接寫出你認為正確的結(jié)論.
【答案】(1)α+β=180°;(2)(1)中結(jié)論是成立;(3)(1)中結(jié)論是不成立,成立的是:∠BAC+∠CBE=180°.
【解析】試題分析:(1)先判斷出△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的內(nèi)角和即可得出結(jié)論;
(2)同(1)的方法即可得出結(jié)論;
(3)先判斷出△ABE≌△ACD,再用三角形的內(nèi)角和即可得出結(jié)論.
試題解析:解:(1)α+β=180°.理由如下:
如圖③.∵∠BAC=∠DAE,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:α+β=180°;
(2)(1)中結(jié)論是成立,理由如下:
如圖④,連接CE.∵∠BAC=∠DAE,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:α+β=180°;
(3)(1)中結(jié)論是不成立,成立的是:∠BAC+∠CBE=180°.理由如下:
如圖⑤,連接BE.∵∠BAC=∠DAE,∴∠BAE=∠CAD.在△ABE和△ACE中,,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD.在△ABC中,∠BAC+∠ABC+∠ACD=180°,∴∠BAC+∠ABC+∠ABE=∠BAC+∠CBE=180°,即:∠BAC+∠CBE=180°.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,CE∥BD交AD的延長線于點E,CE=AC.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,AD=3,求四邊形BCED的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB=10cm,在直線AB上取一點C,使AC=16cm,則線段AB的中點與AC的中點的距離為( )
A.13cm或26cmB.6cm或13cmC.6cm或25cmD.3cm或13cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,∠EAF=45°,連接對角線BD交AE于M,交AF于N,若DN=1,BM=2,那么MN=_____.證明:DN2+BM2=MN2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程隊承包了某段全長1800米的過江隧道施工任務,甲、乙兩個班組分別從東、西兩端同時掘進,已知甲組比乙組平均每天多掘進2米,經(jīng)過5天施工,兩組共掘進了60米,為加快工程進度,通過改進施工技術(shù),在剩余的工程中,甲組平均每天能比原來多掘進2米,乙組平均每天能比原來多掘進1米,按此施工進度,能夠比原來少用______天完成任務.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,對于任意實數(shù)x1,x2,當x1>x2時,滿足y1<y2的是( )
A. y=﹣3x+2B. y=2x+1C. y=5xD. y=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設(shè)這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中:(1)正整數(shù)和負整數(shù)統(tǒng)稱為整數(shù);(2)把能夠?qū)懗煞謹?shù)形式 (m、n是整數(shù),n≠0)的數(shù)叫做有理數(shù);(3)異號兩數(shù)相加,當絕對值不等時,取絕對值較大加數(shù)的符號,并用較大的加數(shù)減去較小的加數(shù);(4)0是整數(shù),但不是整式.正確的個數(shù)有 ( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com