【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時,可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時,為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當這根魚竿完全拉伸時,其長度為311cm,求x的值.
【答案】
(1)解:第5節(jié)套管的長度為:50﹣4×(5﹣1)=34(cm)
(2)解:第10節(jié)套管的長度為:50﹣4×(10﹣1)=14(cm),
設(shè)每相鄰兩節(jié)套管間重疊的長度為xcm,
根據(jù)題意得:(50+46+42+…+14)﹣9x=311,
即:320﹣9x=311,
解得:x=1.
答:每相鄰兩節(jié)套管間重疊的長度為1cm
【解析】(1)根據(jù)“第n節(jié)套管的長度=第1節(jié)套管的長度﹣4×(n﹣1)”,代入數(shù)據(jù)即可得出結(jié)論;(2)同(1)的方法求出第10節(jié)套管重疊的長度,設(shè)每相鄰兩節(jié)套管間的長度為xcm,根據(jù)“魚竿長度=每節(jié)套管長度相加﹣(10﹣1)×2×相鄰兩節(jié)套管間的長度”,得出關(guān)于x的一元一次方程,解方程即可得出結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB⊥BC,DC⊥BC,B、C分別是垂足,DE交AC于M,BC=CD,AB=EC,DE與AC有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一棵樹上10m高的B處有兩只猴子,其中一只猴子沿樹爬下,走到離樹20m 處的池塘A處,另一只猴子爬到樹頂D處直躍向池塘的A處,如果兩只猴子所經(jīng)過的路程相等,則這顆樹有多高(設(shè)樹與地面垂直)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣6x﹣k2=0(k為常數(shù)).
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)x1,x2為方程的兩個實數(shù)根,且x1+2x2=14,試求出方程的兩個實數(shù)根和k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圓心相同,半徑不相等的兩個圓叫做同心圓,用大圓的面積減去小圓的面積就是圓環(huán)的面積.
(1)如圖1,大圓的弦AB切小圓于點P,求證:AP=BP;
(2)若AB=2a,請用含有a的代數(shù)式表示圖1中的圓環(huán)面積;
(3)如圖2,若大圓的弦AB交小圓于C、D兩點,且AB=8,CD=6,則圓環(huán)的面積為 ____ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點,OC=OA,若E是CD上任意一點,連接BE交AC于點F,連接DF.
(1)證明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四邊形ABCD的周長;
(3)請你添加一個條件,使得∠EFD=∠BAD,并予以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com