【題目】1)如圖,AE是∠MAD的平分線,點CAE上一點,點BAM上一點,在AD上求作一點P,使得△ABC≌△APC請保留清晰的作圖痕跡.

2)如圖a,在△ABC, ACB=,∠A=,BE、CF分別是∠ABC和∠ACB的角平分線,CFBE相交于點O.請?zhí)骄烤段BCBF、CE之間的關(guān)系,直接寫出結(jié)論,不要求證明.

3)如圖b,若(2)中∠ACB為任意角,其它條件不變,請?zhí)骄?/span>BC、BF、CE之間又有怎樣的關(guān)系,請證明你的結(jié)論.

【答案】1)答案見解析;(2BC=BF+CE,證明見解析;(3BC=BF+CE,證明見解析.

【解析】

1)以點A為圓心,以AB長為半徑畫弧交AD于一點即可;

(2)在BC上截取BD=BF,首先證明△BFO≌△BDO,創(chuàng)造條件證明△COE≌△COD即可;
(3)在BC上截取BF'=BF,首先證明△BFO≌△BF'O,創(chuàng)造條件證明△COE≌△COF'即可.

1)以點A為圓心,以AB長為半徑畫弧交AD于一點,則此點為所要求的點P.

2)線段BCBF、CE之間的關(guān)系為:BC=BF+CE .

BC上截取BD=BF.

在△BFO和△BDO

∴△BFO≌△BDO

∴∠BOF=BOD

∵∠A=,BECF分別是∠ABC和∠ACB的角平分線,CFBE相交于點O.

∴∠BOC=180ОABCACB=18060=120

∴∠BOD=BOF=COE=180120 =60.

COD=BOC-∠BOD=12060=60

在△COE和△COD

∴△COE≌△COD

CE=CD

BC=BF+CE .

3)線段BCBF、CE之間的關(guān)系為:BC=BF+CE .

BC上截取BF'=BF.

在△BFO和△BF'O

∴△BFO≌△BF'O

∴∠BOF=BOF'

∵∠A=60BE、CF分別是∠ABC和∠ACB的角平分線,CFBE相交于點O.

∴∠BOC=180ОABCACB=18060=120

∴∠BOF'=BOF=COE=180120=60.

COF'=BOC-∠BOF'=12060 =60

在△COE和△COF'

∴△COE≌△COF'

CE=CF'

BC=BF+CE .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEABAEAB,BCCDBCCD,請按圖中所標注的數(shù)據(jù),計算圖中實線所圍成的面積S是(

A.50B.62C.65D.68

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時距離乙地ykm,已知小紅駕車中途休息了1小時,圖中的折線表示她在整個駕車過程中yx之間的函數(shù)關(guān)系.

1B點的坐標為(  ,  );

2)求線段AB所表示的yx之間的函數(shù)表達式;

3)小紅休息結(jié)束后,以60km/h的速度行駛,則點D表示的實際意義是 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的邊長為8,點是邊上一動點(不與點重合),以為邊在的下方作等邊三角形,連接.

1)在運動的過程中,有何數(shù)量關(guān)系?請說明理由.

2)當BE=4時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于兩點(點軸的正半軸上),與軸交于點,矩形的一條邊在線段上,頂點,分別在線段,上.

求點,,的坐標;

若點的坐標為,矩形的面積為,求關(guān)于的函數(shù)表達式,并指出的取值范圍;

當矩形的面積取最大值時,

①求直線的解析式;

②在射線上取一點,使,若點恰好落在該拋物線上,則________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作奠定了中國傳統(tǒng)數(shù)學的基本框架其中卷第九“勾股”章,主要講述了以測量問題為中心的直角三角形三邊互求的關(guān)系其中記載:“今有邑東西七里,南北九里,各中開門,出東門一十五里有木,問:出南門幾何步而見木?”譯文:“如圖,今有一座長方形小城,東西向城墻長7南北向城墻長9,各城墻正中均開一城門走出東門15里處有棵大樹,問走出南門多少步恰好能望見這棵樹?”(注:1里=300)你的計算結(jié)果是:出南門________步而見木

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線l1y=2x+8與坐標軸分別交于A,B兩點,點Cx正半軸上,且OA=OC.點P為線段AC(不含端點)上一動點,將線段OP繞點O逆時針旋轉(zhuǎn)90°,得線段OQ(見圖2

1)分別求出點B、點C的坐標;

2)如圖2,連接AQ,求證:OAQ=45°

3)如圖2,連接BQ,試求出當線段BQ取得最小值時點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在△ABC中,AC=BC=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經(jīng)過點C,并且與CB的夾角∠PCB=α,斜邊PNAC于點D.

(1)當PN∥BC時,判斷△ACP的形狀,并說明理由;

(2)點P在滑動時,當AP長為多少時,△ADP△BPC全等,為什么?

(3)點P在滑動時,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大;若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)y=(2m+4)x,求:

(1)m為何值時,函數(shù)圖象經(jīng)過第一、三象限?

(2)m為何值時,y隨x的增大而減小?

(3)m為何值時,點(1,3)在該函數(shù)的圖象上?

查看答案和解析>>

同步練習冊答案