【題目】已知:如圖,拋物線yax2bxcx軸交于點A(2,0),B(40),且過點C(0,4)

(1)求出拋物線的表達式和頂點坐標(biāo);

(2)請你求出拋物線向左平移3個單位長度,再向上平移1.5個單位長度后拋物線的表達式.

【答案】(1)拋物線表達式為yx23x4,頂點坐標(biāo)為(3,- );(2) yx21.

【解析】試題分析: 直接將三點的坐標(biāo)代入拋物線解析式,聯(lián)立方程組求出 的值即可確定拋物線的解析式,再將其寫成頂點式的形式,即可確定出頂點坐標(biāo);

二次函數(shù)圖象的平移規(guī)律為:左加右減,上加下減,因此把中所得拋物線先向左平移個單位,即給的值加上,再將向左平移后的拋物線向上平移個單位,即給等式右邊加上,進而化簡整理即可得到最終答案.

試題解析:

∵點在拋物線上,

解得

∴拋物線的解析式為

即拋物線的頂點坐標(biāo)為

將拋物線向左平移個單位長度后得到拋物線再向上平移個單位長度后得到的拋物線的解析式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時針方向旋轉(zhuǎn)40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。

A. π﹣6 B. π C. π﹣3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)① 如圖1,已知正方形ABCD的邊長為a,正方形FGCH的邊長為b,長方形ABGEEFHD為陰影部分,則陰影部分的面積是    (寫成平方差的形式);

② 將圖1中的長方形ABGEEFHD剪下來,拼成圖2所示的長方形,則長方形AHDE的面積是           (寫成多項式相乘的形式);

(2)比較圖1與圖2的陰影部分的面積,可得乘法公式 

(3)利用所得公式計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ΔABC中,DE、MN是邊AB、AC的垂直平分線,其垂足分別為點D、M,分別交BC于點EN,DEMN交于點F.

(1)若∠B=24°,求∠BAE的度數(shù).

(2)AB=8,AC=11,思考ΔAEN的周長肯定小于多少?

(3)若∠EAN=40°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是( 。

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程x22m+3x+m2+3m+2=0

(1)已知x=2是方程的一個根,求m的值;

(2)以這個方程的兩個實數(shù)根作為△ABCAB、ACABAC)的邊長,當(dāng)BC=時,△ABC是等腰三角形,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB的垂直平分線EFBC于點E,交AB于點F,D為線段CE的中點,BE=AC.

(1)求證:AD⊥BC.

(2)若∠BAC=75°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求完成作圖:

(1)作出△ABC關(guān)于x軸對稱的圖形;

(2)寫出A、B、C的對應(yīng)點A′B′、C′的坐標(biāo);

(3)x軸上畫出點Q,使△QAC的周長最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象向右平移個單位長度得到一個新的函數(shù),當(dāng)自變量x1,2,3,4,5,…,(正整數(shù))時,新的函數(shù)值分別為y1,y2,y3,y4,y5,…,其中最小值和最大值分別為(  )

A. y1,y2 B. y43,y44 C. y44,y45 D. y2014,y2015

查看答案和解析>>

同步練習(xí)冊答案