【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD,∠AOC=72°,∠DOF=90°.
(1)寫出圖中任意一對(duì)互余的角;
(2)求∠EOF的度數(shù).
【答案】(1)∠BOF與∠BOD或∠DOE與∠EOF;(2)∠EOF=54°.
【解析】
試題分析:(1)根據(jù)兩角互余的性質(zhì)得出互余的角;(2)首先根據(jù)題意得出∠COF=90°,根據(jù)∠AOC的度數(shù)得出∠BOF和∠BOD的度數(shù),根據(jù)角平分線的性質(zhì)得出∠BOE的度數(shù),從而根據(jù)∠EOF=∠BOF+∠BOE得出答案.
試題解析:(1)∠BOF與∠BOD或∠DOE與∠EOF
(2)∵∠COF=180°-∠DOF=90°, ∴∠BOF=180°-∠AOC-∠COF=180°-72°-90°=18°
∴∠BOD=∠DOF-∠BOF=90°-18°=72°, ∵OE平分∠BOD, ∴∠BOE=∠BOD=36°,
∴∠EOF=∠BOF+∠BOE=18°+36°=54°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中注有“今兩算得失相反,要令正負(fù)以名之”,意思是:今有兩數(shù)若其意義相反,則分別叫做正數(shù)與負(fù)數(shù),若收入60元記作+60元,則-20元表示( )
A.收入20元B.收入40元C.支付40元D.支付20元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一次函數(shù)y=-2x+1 ,當(dāng)-2≤x≤3 時(shí),函數(shù)值y的取值范圍是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點(diǎn)E,在BC上截取BF=AE,連接AF交CE于點(diǎn)G,連接DG交AC于點(diǎn)H,過點(diǎn)A作AN⊥BC,垂足為N,AN交CE于點(diǎn)M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上把﹣3的對(duì)應(yīng)點(diǎn)移動(dòng)5個(gè)單位后,所得的對(duì)應(yīng)點(diǎn)表示的數(shù)是( )
A.2或﹣8
B.﹣8
C.2
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE、CF是△ABC的高且相交于點(diǎn)P,AQ∥BC交CF延長(zhǎng)線于點(diǎn)Q,若有BP=AC,CQ=AB,線段AP與AQ的關(guān)系如何?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從-3、-1、、1、3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),記為a,則關(guān)于x的一次函數(shù)y=-x+a的圖象經(jīng)過第一象限的概率為_____;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com