【題目】如圖,在△ABC中,ABAC,點(diǎn)DBC上,且BDBA,點(diǎn)EBC的延長(zhǎng)線(xiàn)上,且CECA

1)若∠BAC90°(圖1),求∠DAE的度數(shù);

2)若∠BAC120°(圖2),求∠DAE的度數(shù);

3)當(dāng)∠BAC90°時(shí),探求∠DAE與∠BAC之間的數(shù)量關(guān)系,直接寫(xiě)出結(jié)果.

【答案】1)∠DAE45°,(2)∠DAE60°;(3)∠DAEBAC

【解析】

1)由于ABAC,∠BAC90°,從而求出∠B=∠ACB45°,又因?yàn)?/span>BDBA,可知∠BAD=∠BDA67,因?yàn)?/span>CECA,可知∠CAE=∠EACB22,最后可求出得∠DAE=∠BAE﹣∠BAD45°

2)由于ABAC,∠BAC120°,從而求出∠B=∠ACB30°,又因?yàn)?/span>BDBA,可知∠BAD=∠BDA75°,因?yàn)?/span>CECA,可知∠CAE=∠EACB15°,最后可求出得∠DAE=∠BAE﹣∠BAD60°

3)可設(shè)∠CAEx,∠BADy,則∠B180°2y,∠E=∠CAEx,從而可知∠BAE2yx,∠DAEyx,∠BAC2y2x,所以可知∠DAEBAC,

1)如圖1,∵ABAC,∠BAC90°,

∴∠B=∠ACB45°,

BDBA,

∴∠BAD=∠BDA180°﹣∠B)=67

CECA

∴∠CAE=∠EACB22,

∴∠BAE180°﹣∠B﹣∠E112,

∴∠DAE=∠BAE﹣∠BAD45°

2)如圖2,∵ABAC,∠BAC90°,

∴∠B=∠ACB30°,

BABD,

∴∠BAD=∠BDA75°,

∴∠DAC45°,

CACE,

∴∠E=∠CAE15°,

∴∠DAE=∠DAC+CAE60°

3)∠DAEBAC,

理由:設(shè)∠CAEx,∠BADy,

則∠B180°2y,∠E=∠CAEx,

∴∠BAE180°﹣∠B﹣∠E2yx,

∴∠DAE=∠BAE﹣∠BAD2yxyyx,

BAC=∠BAE﹣∠CAE2yxx2y2x

∴∠DAEBAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點(diǎn)E出發(fā)沿直線(xiàn)向點(diǎn)F運(yùn)動(dòng),完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過(guò)的路程為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,,的中垂線(xiàn),的中垂線(xiàn),已知的長(zhǎng)為,則陰影部分的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅行團(tuán)去景點(diǎn)游覽,共有成人和兒童20人,且旅行團(tuán)中兒童人數(shù)多于成人.景點(diǎn)規(guī)定:成人票40/張,兒童票20/張.

1)若20人買(mǎi)門(mén)票共花費(fèi)560元,求成人和兒童各多少人?

2)景區(qū)推出慶元旦優(yōu)惠方案,具體方案為:

方案一:購(gòu)買(mǎi)一張成人票免一張兒童票費(fèi)用;

方案二:成人票和兒童票都打八折優(yōu)惠;

設(shè):旅行團(tuán)中有成人a人,旅行團(tuán)的門(mén)票總費(fèi)用為W元.

①方案一:_____________________;

方案二:____________________;

②試隨著a的變化,哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線(xiàn),ABADBC131210,△ABD的周長(zhǎng)是60cm.求AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一簡(jiǎn)易矩形自行車(chē)車(chē)棚,一邊利用教學(xué)樓的后墻(可利用的墻長(zhǎng)為19m),另外三邊利用學(xué),F(xiàn)有總長(zhǎng)38m的鐵欄圍成。

1)若圍成的面積為180m2,試求出自行車(chē)車(chē)棚的長(zhǎng)和寬;

2)能?chē)傻拿娣e為200m2自行車(chē)車(chē)棚嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1,我們?cè)?/span>2018年某月的日歷中標(biāo)出一個(gè)十字星,并計(jì)算它的十字差(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱(chēng)為該十字星的十字差”)該十字星的十字差為,再選擇其它位置的十字星,可以發(fā)現(xiàn)十字差仍為48

1)如圖2,將正整數(shù)依次填入5列的長(zhǎng)方形數(shù)表中,探究不同位置十字星的十字差,可以發(fā)現(xiàn)相應(yīng)的十字差也是一個(gè)定值,則這個(gè)定值為

2)若將正整數(shù)依次填入6列的長(zhǎng)方形數(shù)表中,不同位置十字星的十字差是一個(gè)定值嗎?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.

3)若將正整數(shù)依次填入k列的長(zhǎng)方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)十字差為與列數(shù)有關(guān)的定值,請(qǐng)用表示出這個(gè)定值,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)m∥n,點(diǎn)C是直線(xiàn)m上一點(diǎn),點(diǎn)D是直線(xiàn)n上一點(diǎn),CD與直線(xiàn)m、n不垂直,點(diǎn)P為線(xiàn)段CD的中點(diǎn).

(1)操作發(fā)現(xiàn):直線(xiàn)l⊥m,分別交m、n于點(diǎn)A、B,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí)(如圖1),連結(jié)PA,請(qǐng)直接寫(xiě)出線(xiàn)段PAPB的數(shù)量關(guān)系:   

(2)猜想證明:在圖1的情況下,把直線(xiàn)l向右平移到如圖2的位置,試問(wèn)(1)中的PAPB

的關(guān)系式是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.

(3)延伸探究:在圖2的情況下,把直線(xiàn)l繞點(diǎn)A旋轉(zhuǎn),使得∠APB=90°(如圖3),若兩平行線(xiàn)m、n之間的距離為2k,求證:PAPB=kAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)與二次函數(shù)的圖像交于點(diǎn)A、O,(O是坐標(biāo)原點(diǎn)),點(diǎn)P為二次函數(shù)圖像的頂點(diǎn),OA=,AP的中點(diǎn)為B.

(1)求二次函數(shù)的解析式;

(2)求線(xiàn)段OB的長(zhǎng);

(3)若射線(xiàn)OB上存在點(diǎn)Q,使得△AOQ與△AOP相似,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案