【題目】(1)解方程:
(2)解方程:
(3)如圖所示,小明將一張正方形紙片,剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條。如果兩次剪下的長條面積正好相等,那么每個長條的面積為多少?
【答案】(1)x=1;(2)x=;(3)80cm2
【解析】
(1)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.
(2)方程去分母,去括號,移項合并,把x系數(shù)化為1,即可求出解.
(3)首先根據(jù)題意,設原來正方形紙的邊長是xcm,則第一次剪下的長條的長是xcm,寬是4cm,第二次剪下的長條的長是x-4cm,寬是5cm;然后根據(jù)第一次剪下的長條的面積=第二次剪下的長條的面積,列出方程,求出x的值是多少,即可求出每一個長條面積為多少.
解:(1)去分母,得
6x-1=-x+6,
移項,得
6x+x=6+1,
合并同類項,得
7x=7,
系數(shù)化為1,得
x=1.
(2)去分母得:6(x+15)=15-10(x-7),
去括號得:6x+90=15-10x+70,
移項合并得:16x=-5,
解得:x=.
(3)設原來正方形紙的邊長是xcm,則第一次剪下的長條的長是xcm,寬是4cm,第二次剪下的長條的長是(x-4)cm,寬是5cm,
則4x=5(x-4),
去括號,可得:4x=5x-20,
移項,可得:5x-4x=20,
解得x=20
4x=4×20=80(cm2)
所以每一個長條面積為80cm2.
故答案為:x=1;x=;80cm2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AE、BD相交于點C,AC=AD,BC=BE,F(xiàn)、G、H分別是DC、CE、AB的中點.求證:
(1)HF=HG;
(2)∠FHG=∠DAC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學課外興趣小組的同學正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(≈1.7,結果精確到個位).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式,能夠表示圖中陰影部分的面積的是( 。
①ac+(b﹣c)c;②ac+bc﹣c2;③ab﹣(a﹣c)(b﹣c);④(a﹣c)c+(b﹣c)c+c2
A. ①②③④ B. ①②③ C. ①② D. ①
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點A1,A2,A3…和點C1,C2,C3…分別在直線y=x+1和x軸上,則點Bn的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為開展體育大課間活動,某學校需要購買籃球與足球若干個,已知購買3個籃球和2個足球需求共需要575元,購買4個籃球和3個足球共需要785元.
購買一個籃球,一個足球各需多少元?
若體育老師帶了8000元去購買這種籃球與足球共80個,由于數(shù)量較多,店主給出籃球與足球一律打八折的優(yōu)惠價,那么他最多能購買多少個籃球?同時買了多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知A(2,2)、B(﹣2,0)、C(﹣1,﹣2).
(1)在平面直角坐標系中畫出△ABC;
(2)若點D與點C關于y軸對稱,則點D的坐標為 ;
(3)求△ABC的面積;
(4)已知點P為x軸上一點,若S△ABP=5時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD為AB邊上的高.動點P從點A出發(fā),沿著△ABC的三條邊逆時針走一圈回到A點,速度為2cm/s,設運動時間為t s.
(1)求CD的長;
(2)t為何值時,△ACP是等腰三角形?
(3)若M為BC上一動點,N為AB上一動點,是否存在M,N使得AM+MN 的值最?如果有,請直接寫出最小值,如果沒有,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com