【題目】如圖,矩形ABCD的頂點A,B,D分別落在雙曲線y=(k>0)的兩個分支上,AB邊經(jīng)過原點O,CB邊與x軸交于點E,且EC=EB,若點A的橫坐標(biāo)為1,則矩形ABCD的面積_____.
【答案】.
【解析】
過點B作BM⊥x軸于點M,過點C作CN⊥x軸于點N,過點A作AF⊥x軸于點F,設(shè)A點坐標(biāo)為(1,a),則OB、BE、EM均可用a表示,易知△CNE≌△BME,通過線段等量關(guān)系可求用a表示的C點坐標(biāo),繼而求得D點坐標(biāo),根據(jù)A、D都在反比例函數(shù)圖象上,得到關(guān)于a的方程,求解a值,再求出AB和BC值,則矩形面積可求.
設(shè)A點坐標(biāo)為(1,a),過點B作BM⊥x軸于點M,過點C作CN⊥x軸于點N,過點A作AF⊥x軸于點F,如下圖所示,
由A(1,a),
由對稱性質(zhì)有B(﹣1,﹣a),BM=AF=a,OM=OF=1,
∴OB=OA=,
∵tan∠BOE=tan∠AOF,
∴,即,
∴BE=,
∴,
∵BE=CE,∠CEN=∠BEM,∠CNE=∠BME,
∴△CNE≌△BME,
∴CN=BM=a,NE=EM=a2,CE=BE=,
∴ON=2a2+1,
∴C(﹣2a2﹣1,a),
∵A(1,a),B(﹣1,﹣a),BC//AD,AD=BC,
∴D(1﹣2a2,3a),
∵A、D都在反比例函數(shù)圖象上,
∴3a(1﹣2a2)=a1,
解得a=,
∴AB=2OA=2=,BC=2BE=2a=,
∴矩形ABCD的面積 .
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與 x 軸交于點 A、B,與 y 軸交于點 C,且 OC=2OB, 點 D 為線段 OB 上一動點(不與點 B 重合),過點 D 作矩形 DEFH,點 H、F 在拋物線上,點 E 在 x 軸 上.
(1)求拋物線的解析式;
(2)當(dāng)矩形 DEFH 的周長最大時,求矩形 DEFH 的面積;
(3)在(2)的條件下,矩形 DEFH 不動,將拋物線沿著 x 軸向左平移 m 個單位,拋物線與矩形 DEFH的邊交于點 M、N,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】題目:為了美化環(huán)境,某地政府計劃對轄區(qū)內(nèi)的土地進(jìn)行綠化.為了盡快完成任務(wù),實際平均每月的綠化面積是原計劃的1.5倍,結(jié)果提前2個月完成任務(wù).求原計劃平均每月的綠化面積.
甲同學(xué)所列的方程為
乙同學(xué)所列的方程為
(1)甲同學(xué)所列的方程中表示 .乙同學(xué)所列的方程中表示 .
(2)任選甲、乙兩同學(xué)的其中一個方法解答這個題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線與軸交于、兩點,與直線交于、兩點,直線與軸交于點.
(1)求直線的解析式:
(2)若點在線段上以每秒1個單位長度的速度從點向點運動(不與點、重合),同時,點在射線上以每秒2個單位長度的速度從點向點方向運動,設(shè)運動的時間為秒,的面積為,求關(guān)于的函數(shù)關(guān)系式,并求取何值時,最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在和中,,連接交于點.求證:;并直接寫出______.
(2)類比探究:如圖2,在和中,,連接交的延長線于點.請判斷的值及的度數(shù).
(3)拓展延伸:在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點.若,請直接寫出當(dāng)點與點重合時的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖點A,E,F,C在同一直線上,AE=EF=FC,過E,F分別作DE⊥AC,BF⊥AC,連結(jié)AB,CD,BD,BD交AC于點G,若AB=CD.
(1)求證:△ABF≌△CDE.
(2)若AE=ED=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為防控“新型冠狀病毒”,某超市分別用1600元、6000元購進(jìn)兩批防護(hù)口罩,第二批防護(hù)口罩的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批口罩進(jìn)貨單價多少元?
(2)若這兩次購買防護(hù)口罩過程中所產(chǎn)生其他費用不少于600元,那么該超市購買這兩批防護(hù)口罩的平均單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于銷售單價,日銷售量,日銷售利潤的幾組對應(yīng)值如表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | 25 |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價x為多少元時,日銷售利潤w最大?最大利潤是多少元?
(3)當(dāng)銷售單價x為多少元時,日銷售利潤w在1500元以上?(請直接寫出x的范圍)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計圖中的m= ,n= .
(2)已知該校共有3600名學(xué)生,請你估計該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?
(3)學(xué)校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(2男1女)中隨機(jī)選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com