【題目】如圖,直線PC交O于A,C兩點,AB是O的直徑,AD平分PAB交O于點D,過D作DE垂直PA,垂足為E.

(1)求證:DE是⊙O的切線;

(2)若AE=1,AC=4,求直徑AB的長.

【答案】(1)見解析;(2)6.

【解析】分析

(1)如下圖,連接OD,由已知條件易得∠DAE=∠DAO,∠DAO=∠ADO,∠DAE+∠ADE=90°,由此可得∠ADO+∠ADE=90°=∠ODE,從而可得DE⊙O的切線

(2)如下圖,過點OOF⊥AC于點F,則易得AF=AC=2,四邊形OFED是矩形,從而可得OD=EF=AE+AF=1+2=3,由此可得AB=2OD=6.

詳解

(1)如下圖,連接OD,

∵AD平分∠PAB,

∴∠PAD=∠OAD,

∵OA=OD,

∴∠ODA=∠OAD,

∴∠PAD=∠ODA,

∵DE⊥PA,

∴∠DEA=∠EAD+∠EDA=90°,

∴∠ODA+∠EDA=90°,

∴DE⊙O的切線

(2)作OF⊥AC,

∴AF=CF=2,∠OFE=90°,

∵∠DEA=∠ODE=90°,

四邊形OFED為矩形,

∴OD=EF=AE+AF=3,

∴AB=2OD=6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了更好的開展學校特色體育教育,從全校八年級的各班分別隨機抽取了5名男生和5名女生,組成了一個容量為60的樣本,進行各項體育項目的測試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個個體的測試成績的部分統(tǒng)計表、圖:某校60名學生體育測試成績頻數(shù)分布表

成績

劃記

頻數(shù)

百分比

優(yōu)秀

正正正

a

30%

良好

正正正正正正

30

b

合格

9

15%

不合格

3

5%

合計

60

60

100%

(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:

(1)表中的a=_____,b=_____;

(2)請根據(jù)頻數(shù)分布表,畫出相應的頻數(shù)分布直方圖;

(3)如果該校八年級共有150名學生,根據(jù)以上數(shù)據(jù),估計該校八年級學生身體素質(zhì)良好及以上的人數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對某個函數(shù)給定如下定義:若存在實數(shù)M>0,對于任意的函數(shù)值y,都滿足|y|≤M,則稱這個函數(shù)是有界函數(shù).在所有滿足條件的M中,其中最小值稱為這個函數(shù)的邊界值.現(xiàn)將有界函數(shù)y=2+1(0xm,1≤m≤2)的圖象向下平移m個單位,得到的函數(shù)邊界值是t,且≤t≤2,則m的取值范圍是( )

A. 1≤m≤ B. ≤m≤ C. ≤m≤ D. ≤m≤2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知∠ABC∠ACB的平分線相交于點F,過點FDF∥BC,交AB于點D,交AC于點E,若BD=4,DE=9,則線段CE的長為( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個,乙商店所需數(shù)量不超過50個,設(shè)甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.

(1)求y關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;

(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調(diào)整:數(shù)量不超過100個時,價格不變;數(shù)量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=3,AC=4,點DBC的中點,將ABD沿AD翻折得到AED,連CE

1)求證:AD=ED

2)連接BE,猜想BEC的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格當中,三角形的三個頂點都在格點上.直線與直線相交于點

1)畫出將三角形向右平移5個單位長度后的三角形(點的對應點分別是點).

2)畫出三角形關(guān)于直線對稱的三角形(點的對應點分別是點).

3)畫出將三角形繞著點旋轉(zhuǎn)后的三角形(點的對應點分別是點).

4)在三角形,,中,三角形 與三角形 成軸對稱,三角形 與三角形 成中心對稱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線軸,軸分別交于點,B,與反比例函數(shù)圖象的一個交點為.

(1)求反比例函數(shù)的表達式

(2)設(shè)直線 軸,軸分別交于點C,D,,直接寫出的值 .

查看答案和解析>>

同步練習冊答案