【題目】如圖,AB是⊙O的直徑,,E是OB的中點(diǎn),連接CE并延長到點(diǎn)F,使EF=CE.連接AF交⊙O于點(diǎn)D,連接BD,BF.
(1)求證:直線BF是⊙O的切線;
(2)若OB=2,求BD的長.
【答案】(1)證明見解析;(2)BD=.
【解析】(1)連接OC,由已知可得∠BOC=90°,根據(jù)SAS證明△OCE≌△BFE,根據(jù)全等三角形的對應(yīng)角相等可得∠OBF=∠COE=90°,繼而可證明直線BF是⊙O的切線;
(2),由(1)的全等可知BF=OC=2,利用勾股定理求出AF的長,然后由S△ABF=,即可求出BD=.
(1)連接OC,
∵AB是⊙O的直徑,,∴∠BOC=90°,
∵E是OB的中點(diǎn),∴OE=BE,
在△OCE和△BFE中,
,
∴△OCE≌△BFE(SAS),
∴∠OBF=∠COE=90°,
∴直線BF是⊙O的切線;
(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,
∴BF=OC=2,
∴AF=,
∴S△ABF=,
即4×2=2BD,
∴BD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠準(zhǔn)備購買A、B兩種零件,已知A種零件的單價(jià)比B種零件的單價(jià)多30元,而用900元購買A種零件的數(shù)量和用600元購買B種零件的數(shù)量相等.
(1)求A、B兩種零件的單價(jià);
(2)根據(jù)需要,工廠準(zhǔn)備購買A、B兩種零件共200件,工廠購買兩種零件的總費(fèi)用不超過14700元,求工廠最多購買A種零件多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,∠C=45°,點(diǎn)D,E分別為邊AB,AC上的點(diǎn),且DE∥BC,BD=DE=2,CE=,BC=.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿B→D→E→C勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C時(shí)停止.過點(diǎn)P作PQ⊥BC于點(diǎn)Q,設(shè)△BPQ的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABOC在平面直角坐標(biāo)系中,A、B的坐標(biāo)分別為(﹣3,3),(﹣4,0).則過C的雙曲線表達(dá)式為:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】T1、T2分別為⊙O的內(nèi)接正六邊形和外切正六邊形.設(shè)T1的半徑r,T1、T2的邊長分別為a、b,T1、T2的面積分別為S1、S2.下列結(jié)論:①r:a=1:1;②r:b=;③a:b=1:;④S1:S2=3:4.其中正確的有_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點(diǎn)的個(gè)數(shù)是( 。
A. 0個(gè)B. 1個(gè)或2個(gè)
C. 0個(gè)、1個(gè)或2個(gè)D. 只有1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,點(diǎn)N為BC邊上的一點(diǎn),且BN=n(n>0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長的速度沿AB邊向點(diǎn)B運(yùn)動(dòng),連接NP,作射線PM⊥NP交AD于點(diǎn)M,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),t等于多少秒,當(dāng)點(diǎn)M與點(diǎn)D重合時(shí),n等于多少(用含字母t的代數(shù)式表示)
(2)若n=2,則
①在點(diǎn)P運(yùn)動(dòng)過程中,點(diǎn)M是否可以到達(dá)線段AD的延長線上?通過計(jì)算說明理由;
②連接ND,當(dāng)t為何值時(shí),ND∥PM?
(3)過點(diǎn)N作NK∥AB,交AD于點(diǎn)K,若在點(diǎn)P運(yùn)動(dòng)過程中,點(diǎn)K與點(diǎn)M不會重合,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AC為對角線,點(diǎn)P為BC邊上一動(dòng)點(diǎn),連接AP,過點(diǎn)B作BQ⊥AP,垂足為Q,連接CQ.
⑴證明:△ABP∽△BQP;
⑵當(dāng)點(diǎn)P為BC的中點(diǎn)時(shí),若∠BAC=37°,求∠CQP的度數(shù);
⑶當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)C重合時(shí),延長BQ交CD于點(diǎn)F,若AQ=AD,則等于多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com