【題目】某球室有三種品牌的個(gè)乒乓球,價(jià)格是7,8,9(單位:元)三種.從中隨機(jī)拿出一個(gè)球,已知(一次拿到元球).
(1)求這個(gè)球價(jià)格的眾數(shù);
(2)若甲組已拿走一個(gè)元球訓(xùn)練,乙組準(zhǔn)備從剩余個(gè)球中隨機(jī)拿一個(gè)訓(xùn)練.
①所剩的個(gè)球價(jià)格的中位數(shù)與原來個(gè)球價(jià)格的中位數(shù)是否相同?并簡要說明理由;
②乙組先隨機(jī)拿出一個(gè)球后放回,之后又隨機(jī)拿一個(gè),用列表法(如圖)求乙組兩次都拿到8元球的概率.
又拿 先拿 | |||
【答案】(1)這個(gè)球價(jià)格的眾數(shù)為元;(2)①所剩的個(gè)球價(jià)格的中位數(shù)與原來個(gè)球價(jià)格的中位數(shù)相同;②乙組兩次都拿到元球的概率為.
【解析】
(1)由概率公式求出8元球的個(gè)數(shù),由眾數(shù)的定義即可得出答案;
(2)①由中位數(shù)的定義即可得出答案;
②用列表法得出所有結(jié)果,乙組兩次都拿到8元球的結(jié)果有4個(gè),由概率公式即可得出答案.
(1)∵P(一次拿到8元球),∴8元球的個(gè)數(shù)為42(個(gè)),按照從小到大的順序排列為7,8,8,9,∴這4個(gè)球價(jià)格的眾數(shù)為8元;
(2)①所剩的3個(gè)球價(jià)格的中位數(shù)與原來4個(gè)球價(jià)格的中位數(shù)相同.理由如下:
原來4個(gè)球的價(jià)格按照從小到大的順序排列為7,8,8,9,∴原來4個(gè)球價(jià)格的中位數(shù)為8(元),所剩的3個(gè)球價(jià)格為8,8,9,∴所剩的3個(gè)球價(jià)格的中位數(shù)為8元,∴所剩的3個(gè)球價(jià)格的中位數(shù)與原來4個(gè)球價(jià)格的中位數(shù)相同;
②列表如圖所示:共有9個(gè)等可能的結(jié)果,乙組兩次都拿到8元球的結(jié)果有4個(gè),∴乙組兩次都拿到8元球的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校旗桿的下方有一塊圓形草坪,草坪的外面圍著“圓環(huán)”水池,草坪和水池的外邊緣是兩個(gè)同心圓,旗桿在圓心O的位置且與地面垂直.
(1)若草坪的面積與圓環(huán)水池的面積之比為1∶4,求兩個(gè)同心圓的半徑之比.
(2)如圖,若水池外面通往草坪有一座10米長的小橋BC,小橋所在的直線經(jīng)過圓心O,上午8:00時(shí)太陽光線與地面成30°角,旗桿頂端的影子恰好落在水池的外緣;上午9:00時(shí)太陽光線與地面成45°角,旗桿頂端的影子恰好落在草坪的外緣,求旗桿的高OA長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過A、B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,若AC=FC,
(1)求證:AC是⊙O的切線;
(2)若BF=8,DF=,求⊙O的半徑.
(3)過點(diǎn)B作⊙O的切線交CA的延長線于G,如果連接AE,將線段AC以直線AE為對(duì)稱軸作對(duì)稱線段AH,點(diǎn)H正好落在⊙O上,連接BH,求證:四邊形AHBG為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C、D在線段AB上,且△PCD是等邊三角形.∠APB=120°.
(1)求證:△ACP∽△PDB;
(2)當(dāng)AC=4,BD=9時(shí),試求CD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD是一塊綠化帶,其中陰影部分EOFB,GHMN都是正方形的花圃.已知自由飛翔的小鳥,將隨機(jī)落在這塊綠化帶上,則小鳥不落在花圃上的概率為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+2x+3的圖象交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)).若把點(diǎn)B向上平移m(m>0)個(gè)單位長度得點(diǎn)B1,若點(diǎn)B1向左平移n(n>0)個(gè)單位長度,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+2)個(gè)單位長度,將與該二次函數(shù)圖象上的點(diǎn)B3重合.則n的值為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)已知矩形AOCD在平面直角坐標(biāo)系xOy中,∠CAO=60°,OA=2,B點(diǎn)的坐標(biāo)為(2,0),動(dòng)點(diǎn)M以每秒2個(gè)單位長度的速度沿A→C→B運(yùn)動(dòng)(M點(diǎn)不與點(diǎn)A、點(diǎn)B重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求經(jīng)過B、C、D三點(diǎn)的拋物線解析式;
(2)點(diǎn)P在(1)中的拋物線上,當(dāng)M為AC中點(diǎn)時(shí),若△PAM≌△PDM,求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)M在CB上運(yùn)動(dòng)時(shí),如圖(2)過點(diǎn)M作ME⊥AD,MF⊥x軸,垂足分別為E、F,設(shè)矩形AEMF與△ABC重疊部分面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;
(4)如圖(3)點(diǎn)P在(1)中的拋物線上,Q是CA延長線上的一點(diǎn),且P、Q兩點(diǎn)均在第三象限內(nèi),Q、A是位于直線BP同側(cè)的不同兩點(diǎn),若點(diǎn)P到x軸的距離為d,△QPB的面積為2d,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批襯衫,平均每天可銷售出20件,每件盈利40元,為擴(kuò)大銷售盈利減小庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,但要求每件盈利不少于20元,經(jīng)調(diào)查發(fā)現(xiàn)。若每件襯衫每降價(jià)1元,則商場每天可多銷售2件.
(1)若每件襯衫降價(jià)4元,則每天可盈利多少元?
(2)若商場平均每天盈利1200元。則每件襯衫應(yīng)降價(jià)多少元?
(3)若商場為增加效益最大化,求每件襯衫應(yīng)降價(jià)多少元時(shí),商場平均每天盈利最多?每天最多盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過點(diǎn)A(1,3).
(1)求此拋物線的表達(dá)式;
(2)如果點(diǎn)A關(guān)于該拋物線對(duì)稱軸的對(duì)稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com