【題目】如圖,在矩形ABCD中,AB=4,AD=6,E是AD邊上的一個動點,將四邊形BCDE沿直線BE折疊,得到四邊形BC′D′E,連接AC′,AD′.
(1)若直線DA交BC′于點F,求證:EF=BF;
(2)當(dāng)AE=時,求證:△AC′D′是等腰三角形;
(3)在點E的運動過程中,求△AC′D′面積的最小值.
【答案】(1)證明見解析;(2)證明見解析;(3)4.
【解析】
(1)根據(jù)折疊的性質(zhì)和平行線的性質(zhì)得:∠FBE=∠FEB,則EF=BF;
(2)如圖1,先根據(jù)勾股定理計算BE的長,根據(jù)直角邊和斜邊的關(guān)系可得:∠ABE=30°,則△BEF是等邊三角形,最后根據(jù)平行線分線段成比例定理,由FC'∥AH∥ED',得C'H=D'H,從而得結(jié)論;
(3)如圖1,根據(jù)三角形面積公式可知:當(dāng)C'D'最小時,△AC′D′面積最小,如圖2,當(dāng)C'、A、B三點共線時,△AC′D′面積最小,計算AC'=2,根據(jù)三角形面積公式可得結(jié)論.
解:(1)證明:如圖1,由折疊得:∠FBE=∠CBE,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠FEB=∠CBE,
∴∠FBE=∠FEB,
∴EF=BF;
(2)在Rt△ABE中,∵AB=4,AE=,
∴BE=,
∴∠ABE=30°,
∴∠AEB=60°,
由(1)知:EF=BF,
∴△BEF是等邊三角形,
∵AB⊥EF,
∴AE=AF,
過A作AH⊥C'D',
∵FC'⊥C'D',ED'⊥C'D',
∴FC'∥AH∥ED',
∴C'H=D'H,
∵AH⊥C'D',
∴AC'=AD',
∴△AC′D′是等腰三角形;
(3)如圖1,S△C'D'A=AHC'D'=×4C′D′=2C'D',
當(dāng)C'D'最小時,△AC′D′面積最小,
如圖2,當(dāng)C'、A、B三點共線時,△AC′D′面積最小,
由折疊得:BC=BC'=6,∠C=∠C'=90°,
∵AB=4,
∴AC'=64=2,
△AC′D′面積的最小值=AC′C′D′=×2×4=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級甲、乙兩班各有學(xué)生50人,為了了解這兩個班學(xué)生身體素質(zhì)情況,進行了抽樣調(diào)查,過程如下,請補充完整.
(1)收集數(shù)據(jù):從甲、乙兩個班各隨機抽取10名學(xué)生進行身體素質(zhì)測試,測試成績(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績x 人數(shù) 班級 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m=______,n=______.
(3)分析數(shù)據(jù):
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲班 | 72 | x | 75 |
乙班 | 72 | 70 | y |
在表中:x=______,y=______.
②若規(guī)定測試成績在80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請估計乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有______人.
③現(xiàn)從甲班指定的2名學(xué)生(1男1女),乙班指定的3名學(xué)生(2男1女)中分別抽取1名學(xué)生去參加上級部門組織的身體素質(zhì)測試,用樹狀圖和列表法求抽到的2名同學(xué)是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察與思考:閱讀下列材料,并解決后面的問題.
在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖1),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有:,,所以=,即:在一個三角形中,各邊和它所對角的正弦的比相等.在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結(jié)論和有關(guān)定理就可以求出其余三個未知元素.根據(jù)上述材料,完成下列各題.
(1)如圖2,△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=_____;AC=_____;
(2)如圖3,一貨輪在C處測得燈塔A在貨輪的北偏西30°的方向上,隨后貨輪以60海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得燈塔A在貨輪的北偏西75°的方向上(如圖3),求此時貨輪距燈塔A的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖16,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式.
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3)若點E在x軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級共有80名同學(xué)參與數(shù)學(xué)科托底訓(xùn)練.其中(1)班30人,(2)班25人,(3)班25人,呂老師在托底訓(xùn)練后對這些同學(xué)進行測試,并對測試成績進行整理,得到下面統(tǒng)計圖表.
(1)表格中的m落在________組;(填序號)
①40≤x<50, ②50≤x<60, ③60≤x<70,
④70≤x<80, ⑤80≤x<90, ⑥90≤x≤100.
(2)求這80名同學(xué)的平均成績;
(3)在本次測試中,(2)班小穎同學(xué)的成績是70分,(3)班小榕同學(xué)的成績是74分,這兩位同學(xué)成績在自己所在班級托底同學(xué)中的排名,誰更靠前?請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、圖②是某校調(diào)查部分學(xué)生是否知道母親生日情況的扇形和條形統(tǒng)計圖:根據(jù)圖中信息,解答下列問題:
(1)求本次被調(diào)查學(xué)生的人數(shù);
(2)請補全條形統(tǒng)計圖;
(3)若全校共有2700名學(xué)生,請估計這所學(xué)校有多少名學(xué)生知道母親的生日.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小區(qū)常見的漫步機,當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會帶動踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測得BE長為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時,測得∠CAB=42°,點C到地面的距離CF長為0.52m,當(dāng)踏板連桿繞著點A旋轉(zhuǎn)到AG處∠GAB=30°時,求點G距離地面的高度GH的長.(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李珊一家準(zhǔn)備假期游覽華山(H)、秦始皇兵馬俑(T)、大雁塔(G)三個景區(qū),他用摸牌的方式確定游覽順序:如圖,將代表三個景區(qū)的圖片貼在背面完全相同的三張卡片上,將三張卡片背面向上洗勻后摸出一張(不再放回)作為最先游覽的景區(qū),再從剩下的兩張卡片中摸出一張,作為游覽的第二個景區(qū),余下的一張代表最后游覽的景區(qū),比如:他先摸出T,再摸出G,則表示游覽順序為“T﹣G﹣H”,即“秦始皇兵馬俑﹣大雁塔﹣華山”.
(1)求李珊一家最先游覽的景區(qū)是大雁塔的概率;
(2)請用畫樹狀圖或列表的方法表示出所有可能的游覽順序,并求出李珊一家恰好按:“大雁塔﹣華山﹣秦始皇兵馬俑”順序游覽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F是平行四邊形ABCD對角線BD上的兩點,DE=EF=BF,連接CE并延長交AD于點G,連接CF并延長交AB于點H,連接CH,設(shè)△CDG的面積為S1,△CHG的面積為S2,則S1與S2的關(guān)系正確的是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com