【題目】有一組鄰邊相等的凸四邊形叫做和睦四邊形,寓意是全世界和平共處,睦鄰友好,共同發(fā)展.如菱形,正方形等都是和睦四邊形”.

1)如圖1BD平分∠ABC,ADBC,求證:四邊形ABCD和睦四邊形;

2)如圖2,直線x軸、y軸分別交于A、B兩點,點P、Q分別是線段OA、AB上的動點.P從點A出發(fā),以每秒4個單位長度的速度向點O運動.Q從點A出發(fā),以每秒5個單位長度的速度向點B運動.P、Q兩點同時出發(fā),設運動時間為t.當四邊形BOPQ和睦四邊形時,求t的值;

3)如圖3,拋物線軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點,拋物線的頂點為點D.當四邊形COBD和睦四邊形,且CD=OC.拋物線還滿足:①;②頂點D在以AB為直徑的圓上. 是拋物線上任意一點,且.恒成立,求m的最小值.

【答案】1)見解析;(2;(3

【解析】

1)由BD平分∠ABC推出∠ABD=CBD,又ABBC,所以∠ADB=CBD,所以∠ABD=ADB,即AB=AD,所以四邊形ABCD為“和睦四邊形”; (2)分別求出 AQAP、BQ、OPOB的值,連接PQ ,因為,所以,所以,根據(jù)勾股定理求出PQ,再分類討論t的值即可;(3)表示出點的坐標,由可得, 因為得出 所以,即,由①②的方程,且解出a、b的值,求出拋物線的解析式為,因為P在拋物線上,將P代入拋物線得,,可得,又因為,所以,即,得出m的最小值為;

解:

1

,

,

,

四邊形ABCD為“和睦四邊形”;

2)由題意得:AQ=5 t AP=4 t ,BQ=10 - 5 t OP=8 - 4 t ,OB=6,連接PQ ,

,

綜上:

3)由題意得:,

由①②,且,得

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點EF分別在AB、CD邊上,AD=6,AB=8,將△CBE沿CE翻折,使B點的對應點B剛好落在對角線AC上,將△ADF沿AF翻折,使D點的對應點D也恰好落在對角線AC上,連接EF,則EF的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,,,是射線上一點,連接,沿折疊,得

1)如圖所示,當時,_______度;

2)如圖所示,當時,求線段的長度;

3)當點中點時,點是邊上不與點、重合的一個動點,將沿折疊,得到,連接,求周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十九大召開后,某社區(qū)開展了“市民對十九大的關注情況”調(diào)查,采用隨機抽樣的方法訪問了部分年齡在18周歲以上的城鄉(xiāng)居民.小聰根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的頻數(shù)分布置表和扇形統(tǒng)計圖.請根據(jù)圖表解答下列問題.

關注情況

頻數(shù)

非常關注(

128

比較關注(

一般關注(

80

不太關注(

不關注(

2

1)請完成頻數(shù)分布表空格數(shù)據(jù)填寫;

2)求“非常關注”部分扇形圓心角的度數(shù);

3)若該社區(qū)18周歲以上居民共有20000人,請估計“比較關注”和“非常關注”的居民共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A的坐標為(40),點B的坐標為(0,3),在第一象限內(nèi)找一點P(a,b) ,使PAB為等邊三角形,則2(a-b)=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,過點C作⊙O的切線交AB的延長線于點D,已知∠D=30°.

(1)求∠A的度數(shù);

(2)若點F在⊙O上,CF⊥AB,垂足為E,CF=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根

(1)求實數(shù)k的取值范圍.

(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長均為1的三個頂點均在小正方形的頂點上.

1)在圖1中畫一個(點在小正方形的頂點上),使的周長等于的周長,且以、、為頂點的四邊形是軸對稱圖形;

2)在圖2中畫(點在小正方形的頂點上),使的周長等于的周長,且以、、為頂點的四邊形是中心對稱圖形;

3)直接寫出圖2中四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:

分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;

連接MN,分別交AB、AC于點D、O;

CCE∥ABMN于點E,連接AE、CD.

則四邊形ADCE的周長為( 。

A. 10 B. 20 C. 12 D. 24

查看答案和解析>>

同步練習冊答案