【題目】已知,如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,動點P在線段BC上以每秒2個單位長的速度由點C向B 運動.設(shè) 動點P的運動時間為t秒

(1)當(dāng)t為何值時,四邊形PODB是平行四邊形?

(2)在直線CB上是否存在一點Q,使得O、D、Q、P四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標(biāo);若不存在,請說明理由。

(3) 在線段PB上有一點M,且PM=5,當(dāng)P運動 秒時,四邊形OAMP的周長最小, 并畫圖標(biāo)出點M的位置。

【答案】(1)t=2.5;(2)t=4 Q(3,4);t=1 Q(-3,4)(3)t=

【解析】(1)根據(jù)平行四邊形的性質(zhì)就可以知道PB=5,可以求出PC=5,從而可以求出t的值;(2)要使ODQP為菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值;(3)根據(jù)題意即可填得t的值.

解: (1)∵四邊形PODB是平行四邊形,

∴PB=OD=5,

∴PC=5,

∴2t=5,t=2.5;

(2)當(dāng)Q點在P的右邊時

∵四邊形ODQP為菱形,

∴OD=OP=PQ=5,

∴在Rt△OPC中,由勾股定理得:

PC=3,

∴2t=3;t=1.5 Q(8,4).

當(dāng)Q點在P的左邊且在BC線段上時,t=4, Q(3,4);

當(dāng)Q點在P的左邊且在BC的延長線上時,t=1,Q(-3,4) .

(3)t=

“點睛”本題考查了平行四邊形的判定及性質(zhì),菱形的性質(zhì),勾股定理的運用,解題時要運用分類討論的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸的負(fù)半軸交于點A,與y軸交于點B,連結(jié)AB.點C 在拋物線上,直線AC與y軸交于點D.

(1)求c的值及直線AC的函數(shù)表達(dá)式;
(2)點P在x軸的正半軸上,點Q在y軸正半軸上,連結(jié)PQ與直線AC交于點M,連結(jié)MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設(shè)點M的橫坐標(biāo)為m , 求AN的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

請你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

8

請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:

從平均數(shù)和方差結(jié)合看;

從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看分析哪個汽車銷售公司較有潛力

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD是∠BAC的平分線,交BC于點M,交⊙O于點D.則圖中相似三角形共有(
A.2對
B.4對
C.6對
D.8對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,△EFG均是邊長為4的等邊三角形,點D是邊BC、EF的中點. (Ⅰ)如圖①,這兩個等邊三角形的高為;
(Ⅱ)如圖②,直線AG,F(xiàn)C相交于點M,當(dāng)△EFG繞點D旋轉(zhuǎn)時,線段BM長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的括號內(nèi)

, -, 0, ,3.1415926, 20%, 3, 2, -1,3.1010010001…(每兩個1之間逐次增加10)

①正數(shù)集合{ ……}

②負(fù)數(shù)集合{ ……}

③整數(shù)集合{ ……}

④負(fù)分?jǐn)?shù)集合{ ……}

⑤無理數(shù)集合{ ……}

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點E、F同時由A、C兩點出發(fā),分別沿AB、CB方向向點B勻速移動(到點B為止),點E的速度為1cm/s,點F的速度為2cm/s,經(jīng)過t△DEF為等邊三角形,則t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為6,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實驗室:

A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.

利用數(shù)形結(jié)合思想回答下列問題:

(1)數(shù)軸上表示25的兩點之間的距離是_________,數(shù)軸上表示1和-3的兩點之間的距離是 ;

(2)數(shù)軸上若點A表示的數(shù)是xB表示的數(shù)是-2,則點AB之間的距離是 ,若AB=2,那么x ;

(3)當(dāng)x 時,代數(shù)式;

(4)若點A表示的數(shù)-1,點B與點A的距離是10,且點B在點A的右側(cè),動點PQ同時從A、B出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒1個單位長度,求運動幾秒后,PQ=1?(請寫出必要的求解過程)

查看答案和解析>>

同步練習(xí)冊答案