【題目】如圖,是的兩條互相垂直的直徑,點P從點O出發(fā),沿的路線勻速運動,設(shè)(單位:度),那么y與點P運動的時間(單位:秒)的關(guān)系圖是( )
A.B.C.D.
【答案】B
【解析】
根據(jù)圖示,分三種情況:(1)當(dāng)點P沿O→C運動時;(2)當(dāng)點P沿C→B運動時;(3)當(dāng)點P沿B→O運動時;分別判斷出y的取值情況,進而判斷出y與點P運動的時間x(單位:秒)的關(guān)系圖是哪個即可.
解:(1)當(dāng)點P沿O→C運動時,
當(dāng)點P在點O的位置時,y=90°,
當(dāng)點P在點C的位置時,
∵OA=OC,
∴y=45°,
∴y由90°逐漸減小到45°;
(2)當(dāng)點P沿C→B運動時,
根據(jù)圓周角定理,可得
y≡90°÷2=45°;
(3)當(dāng)點P沿B→O運動時,
當(dāng)點P在點B的位置時,y=45°,
當(dāng)點P在點O的位置時,y=90°,
∴y由45°逐漸增加到90°.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為1,,點E是邊上任意一點(端點除外),線段的垂直平分線交,分別于點F,G,,的中點分別為M,N.
(1)求證:;
(2)求的最小值;
(3)當(dāng)點E在上運動時,的大小是否變化?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐操作
如圖①,將矩形紙片沿對角線翻折,使點落在矩形所在平面內(nèi),和相交于點E,連接.
解決問題
(1)在圖①中,
①和的位置關(guān)系為________;
②將剪下后展開,得到的圖形是________;
(2)若圖①中的矩形變?yōu)槠叫兴倪呅螘r(),如圖②所示,結(jié)論①和結(jié)論②是否成立,若成立,請?zhí)暨x其中的一個結(jié)論加以證明,若不成立,請說明理由;
拓展應(yīng)用
(3)在圖②中,若,當(dāng)恰好為直角三角形時,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC=4.D是邊AB的中點,點E為邊AC上的一個動點(與點A、C不重合),過點E作EF∥AB,交邊BC于點F.聯(lián)結(jié)DE、DF,設(shè)CE=x.
(1)當(dāng)x =1時,求△DEF的面積;
(2)如果點D關(guān)于EF的對稱點為D’,點D’ 恰好落在邊AC上時,求x的值;
(3)以點A為圓心,AE長為半徑的圓與以點F為圓心,EF長為半徑的圓相交,另一個交點H恰好落在線段DE上,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小云統(tǒng)計了自己所住小區(qū)5月1日至30日的廚余垃圾分出量(單位:千克),相關(guān)信息如下:
.小云所住小區(qū)5月1日至30日的廚余垃圾分出量統(tǒng)計圖:
.小云所住小區(qū)5月1日至30日分時段的廚余垃圾分出量的平均數(shù)如下:
時段 | 1日至10日 | 11日至20日 | 21日至30日 |
平均數(shù) | 100 | 170 | 250 |
(1)該小區(qū)5月1日至30日的廚余垃圾分出量的平均數(shù)約為 (結(jié)果取整數(shù))
(2)已知該小區(qū)4月的廚余垃圾分出量的平均數(shù)為60,則該小區(qū)5月1日至30日的廚余垃圾分出量的平均數(shù)約為4月的 倍(結(jié)果保留小數(shù)點后一位);
(3)記該小區(qū)5月1日至10日的廚余垃圾分出量的方差為5月11日至20日的廚余垃圾分出量的方差為,5月21日至30日的廚余垃圾分出量的方差為.直接寫出的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,公路MN為東西走向,在點M北偏東36.5°方向上,距離5千米處是學(xué)校A;在點M北偏東45°方向上距離千米處是學(xué)校B.(參考數(shù)據(jù):,).
(1)求學(xué)校A,B兩點之間的距離
(2)要在公路MN旁修建一個體育館C,使得A,B兩所學(xué)校到體育館C的距離之和最短,求這個最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行鋼筆書法大賽,對各年級同學(xué)的獲獎情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中相關(guān)信息解答下列問題:
(1)扇形統(tǒng)計圖中三等獎所在扇形的圓心角的度數(shù)是______度;
(2)請將條形統(tǒng)計圖補全;
(3)獲得一等獎的同學(xué)中有來自七年級,有來自九年級,其他同學(xué)均來自八年級.現(xiàn)準備從獲得一等獎的同學(xué)中任選2人參加市級鋼筆書法大賽,請通過列表或畫樹狀圖的方法求所選出的2人中既有八年級同學(xué)又有九年級同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租賃公司對某款汽車的租賃方式按時段計費,該公司要求租賃方必須在9天內(nèi)(包括9天)將所租汽車歸還.租賃費用(元)隨時間(天)的變化圖象為折線,如圖所示.
(1)當(dāng)租賃時間不超過3天時,求每日租金.
(2)當(dāng)時,求(元)與(天)的函數(shù)關(guān)系式.
(3)甲、乙兩人租賃該款汽車各一輛,兩人租賃的時間共為9天,甲租的天數(shù)少于3天,乙比甲多支付費用720元.請問乙租這款汽車多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種車的剎車距離,經(jīng)試驗發(fā)現(xiàn),甲車的剎車距離s甲是車速v的,乙車的剎車距離s乙等于反應(yīng)距離與制動距離之和,二反應(yīng)距離與車速v成正比,制動距離與車速v2成正比,具體關(guān)系如下表:
車速v(km/h) | 40 | 50 |
剎車距離s乙(m) | 12 | 17.5 |
(1)分別求出s甲、s乙與車速v的函數(shù)關(guān)系式;
(2)若乙車在限速120km/h的高速公路上行駛,乙車的最長剎車距離是多少m?
(3)剎車速度是處理交通事故的一個重要因素,請看下面一個交通事故案例:甲、乙兩車在限速為80km/g的道路上相向而行,等望見對方,同時剎車時已晚,兩車還是相撞了,事后經(jīng)現(xiàn)場勘查,測得甲車的剎車距離超過16m,但小于18m,乙車的剎車距離是24m,請你比較兩車的速度,并判斷哪輛車超速?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com