【題目】跳臺滑雪是冬季奧運會比賽項目之一,如圖平面直角坐標系是跳臺滑雪的截面示意圖,運動員沿滑道下滑,在軸上的點起跳,點距落地水平面軸,運動員落地的雪面開始是一段曲線,到達點后變?yōu)樗矫,點距軸的水平距離為.運動員(看成點)從點起跳后的水平速度為,點是下落路線的某位置.忽略空氣阻力,實驗表明:,的豎直距離與飛出時間的平方成正比,且時;,的水平距離是米.
(1)用含的代數(shù)式表示;
(2)用含、的代數(shù)式表示點的橫坐標和縱坐標,并求與的關系式(不寫的取值范圍);
(3)奧運組委會規(guī)定,運動員落地點距起跳點的水平距離為運動員本次跳躍的成績,并且參賽的達標成績?yōu)?/span>.在運動員跳躍的過程中,點處有一個攝像頭,記錄運動員的空中姿態(tài),當運動員飛過點時,在點上方可被攝像頭抓拍到.若運動員本次跳躍達到達標成績,并且能被處攝像頭抓拍,求從點起跳后的水平速度的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC.
(1)如圖1,將線段AC繞點A逆時針旋轉60°得到AD,連結CD、BD,∠BAC的平分線交BD于點E,連結CE.
①求證:∠AED=∠CED;
②用等式表示線段AE、CE、BD之間的數(shù)量關系(直接寫出結果);
(2)在圖2中,若將線段AC繞點A順時針旋轉60°得到AD,連結CD、BD,∠BAC的平分線交BD的延長線于點E,連結CE.請補全圖形,并用等式表示線段AE、CE、BD之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①函數(shù)的自變量的取值范圍是;②對角線相等的四邊形是矩形;③正六邊形的中心角為;④對角線互相平分且相等的四邊形是菱形;⑤計算的結果為7:⑥相等的圓心角所對的弧相等;⑦的運算結果是無理數(shù).其中正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把3顆算珠放在計數(shù)器的3根插棒上構成一個數(shù)字,例如,如圖擺放的算珠表示數(shù)300.現(xiàn)將3顆算珠任意擺放在這3根插棒上.
(1)若構成的數(shù)是兩位數(shù),則十位數(shù)字為1的概率為 ;
(2)求構成的數(shù)是三位數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知:、都是關于的多項式,,,其中多項式有一項被“□”遮擋住了.
(1)當時,,請求出多項式被“□”遮擋的這一項的系數(shù);
(2)若是單項式,請直接寫出多項式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC的中點,四邊形ABDE是平行四邊形.
(1)求證:四邊形ADCE是矩形;
(2)若AC、DE交于點O,四邊形ADCE的面積為16,CD=4,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在不是菱形的平行四邊形中,在對角線上,在以下三個條件中再選一個,①分別是的中線,②分別是的角平分線,③.使得四邊形是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校積極開展“陽光體育”活動,并開設了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調查,并繪制了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖(部分信息未給出).
(1)求本次被調查的學生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)該校共有3000名學生,請估計全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是半徑為4的的內接三角形,連接,點分別是的中點.
(1)試判斷四邊形的形狀,并說明理由;
(2)填空:①若,當時,四邊形的面積是__________;②若,當的度數(shù)為__________時,四邊形是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com