【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表.

組別

時(shí)間(小時(shí))

頻數(shù)(人數(shù))

頻率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合計(jì)

1

請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:

(1)表中的a= ,b= ,中位數(shù)落在 組,將頻數(shù)分布直方圖補(bǔ)全;

(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?

(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出兩人向全校同學(xué)作讀書心得報(bào)告,請(qǐng)用畫樹(shù)狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

【答案】(1) 12,0.2,1t1.5;補(bǔ)圖見(jiàn)解析;(2) 300人;(3)

【解析】

試題分析:(1)先求得抽取的學(xué)生數(shù),再根據(jù)頻率計(jì)算頻數(shù),根據(jù)頻數(shù)計(jì)算頻率;

(2)根據(jù)每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生的頻率,估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生數(shù)即可;

(3)通過(guò)畫樹(shù)狀圖,根據(jù)概率的計(jì)算公式,即可得到抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

試題解析:(1)抽取的學(xué)生數(shù)為6÷0.15=40人,

a=0.3×40=12人,b=8÷40=0.2,

頻數(shù)分布直方圖如下:

(2)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有:0.15×2000=300人;

(3)樹(shù)狀圖如圖所示:

總共有12種等可能的結(jié)果,其中剛好是1名男生和1名女生的結(jié)果有6種,

抽取的兩名學(xué)生剛好是1名男生和1名女生的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x=2是一元二次方程x2+mx+2=0的一個(gè)解,則m的值是(
A.﹣3
B.3
C.0
D.0或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,DH⊥AB于H, 連接OH,求證:∠DHO=∠DCO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(
A.面積相等的兩個(gè)圓是等圓
B.半徑相等的兩個(gè)半圓是等弧
C.直徑是圓中最長(zhǎng)的弦
D.長(zhǎng)度相等的兩條弧是等弧

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(-2x+a)(x-1)的結(jié)果中不含x的一次項(xiàng),則a3=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分別以AB、BC為邊作等邊三角形ABE和等邊三角形BCD,連結(jié)CE,如圖1所示.

(1)直接寫出∠ABD的大。ㄓ煤恋氖阶颖硎荆
(2)判斷DC與CE的位置關(guān)系,并加以證明;
(3)在(2)的條件下,連結(jié)DE,如圖2,若∠DEC=45°,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果 9x2kx+25 是一個(gè)完全平方式,那么 k 的值是( )

A. 30 B. ±30 C. 15 D. ±15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是AD邊上一點(diǎn),連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點(diǎn)F,CP交BD于點(diǎn)G,連接PO,若PO∥BC,則四邊形OFPG的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)M(a+b,﹣5)與點(diǎn)N(1,3a﹣b)關(guān)于原點(diǎn)對(duì)稱,則a=b=

查看答案和解析>>

同步練習(xí)冊(cè)答案