【題目】洛陽某科技公司生產(chǎn)和銷售AB兩類套裝電子產(chǎn)品已知3A類產(chǎn)品和2B類產(chǎn)品的總售價是24萬元;2A類產(chǎn)品和3B類產(chǎn)品的總售價是26萬元公司生產(chǎn)一套A類產(chǎn)品的成品是萬元,生產(chǎn)B類產(chǎn)品的成本如下表:

套數(shù)

1

2

3

4

總成本萬元

8

12

16

20

該公司A類產(chǎn)品和B類產(chǎn)品的銷售單價分別是多少萬元?

①公司為了方便生產(chǎn),只安排生產(chǎn)一類電子產(chǎn)品,且銷售順利,設(shè)生產(chǎn)銷售該類電子產(chǎn)品x套:公司銷售xA類產(chǎn)品的利潤________;公司銷售xB類產(chǎn)品的利潤________

②怎樣安排生產(chǎn),才能使公司獲得的利潤較高?

【答案】1)該公司每套A類產(chǎn)品或B類產(chǎn)品的售價分別是4萬元、6萬元;(2)①②當(dāng)銷售的總套數(shù)小于8套,則安排生產(chǎn)A類產(chǎn)品利潤最高;當(dāng)銷售的總套數(shù)等于8套,則安排生產(chǎn)A類產(chǎn)品和生產(chǎn)B類產(chǎn)品利潤一樣;當(dāng)銷售的總套數(shù)大于8套,則安排生產(chǎn)B類產(chǎn)品利潤最高.

【解析】

通過題意聯(lián)立二元一次方程方程組解得.

通過利潤=售價-成本便推導(dǎo)出,并利用不等式來解決利潤最大化問題.

解:設(shè)每套A類產(chǎn)品的售價是x萬元,每套B類產(chǎn)品的售價是y萬元,由題意得

解得,

答:該公司每套A類產(chǎn)品或B類產(chǎn)品的售價分別是4萬元、6萬元.

①∵利潤=售價-成本,

每套A類產(chǎn)品的售價分別是4萬元,一套A類產(chǎn)品的成本是萬元,設(shè)生產(chǎn)銷售該類A電子產(chǎn)品x套,成本為,售價為.

;

B類產(chǎn)品的售價分別是6萬元,成本隨套數(shù)而變化,設(shè)生產(chǎn)銷售該類B電子產(chǎn)品x套.

套數(shù)

1

2

3

4

總成本萬元

8

12

16

20

由表格可得,生產(chǎn)B類產(chǎn)品1套,成本:8萬元;2套,成本:12萬元;3套,成本16萬元;4套,20萬元;……

通過觀察并歸納,則成本可以代數(shù)式 表示,售價為.

.

②當(dāng)時,有,解得;

當(dāng)時,有,解得;

當(dāng)時,有,解得

綜上所述,當(dāng)銷售的總套數(shù)小于8套,則安排生產(chǎn)A類產(chǎn)品利潤最高;

當(dāng)銷售的總套數(shù)等于8套,則安排生產(chǎn)A類產(chǎn)品和生產(chǎn)B類產(chǎn)品利潤一樣;

當(dāng)銷售的總套數(shù)大于8套,則安排生產(chǎn)B類產(chǎn)品利潤最高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC于點F,連接DF,下列四個結(jié)論:①△AEF∽△CAB;②CF2AF;③DFDC;④S四邊形CDEFSABF.其中正確的結(jié)論有( )個

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,中,內(nèi)一點,將繞點按逆時針方向旋轉(zhuǎn)角得到,點的對應(yīng)點分別為點,且三點在同一直線上.

1)填空:   (用含的代數(shù)式表示);

2)如圖2,若,請補(bǔ)全圖形,再過點于點,然后探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)若,且點滿足,直接寫出點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與兩軸分別交于A、BC三點,已知點A(﹣3,0),B1,0).點P在第二象限內(nèi)的拋物線上運(yùn)動,作PDx軸于點D,交直線AC于點E

1b   c   ;

2)求線段PE取最大值時點P的坐標(biāo),這個最大值是多少;

3)連接AP,并以AP為邊作等腰直角△APQ,當(dāng)頂點Q恰好落在拋物線的對稱軸上時,直接寫出對應(yīng)的P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點P是 y2 上的一個動點,則點P到直線 y1 的最短距離為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時間為xh,兩車之間的距離為ykm,圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:

(1)慢車的速度為_____km/h,快車的速度為_____km/h;

(2)解釋圖中點C的實際意義并求出點C的坐標(biāo);

(3)求當(dāng)x為多少時,兩車之間的距離為500km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點,線段軸平行,且,拋物線常數(shù))經(jīng)過點

1)求的解析式及其對稱軸和頂點坐標(biāo)

2)判斷點是否在上,并說明理由;

3)若線段以每秒2個單位的速度向下平移,設(shè)平移的時間為

①若與線段總有公共點,直接寫出的取值范圍

②若同時以每秒3個單位的速度向下平移,軸及其右側(cè)圖像與直線總有兩個公共點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點C、B分別在軸、軸上,ABC是等腰直角三角形,∠BAC90°,已知A2,2)、P1,0).MBC的中點,則PM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,與軸交于點,點與點關(guān)于軸對稱,點的坐標(biāo)為,過點軸的垂線交拋物線于點

1)求點、點、點的坐標(biāo);

2)當(dāng)點在線段上運(yùn)動時,直線于點,試探究當(dāng)為何值時,四邊形是平行四邊形;

3)在點的運(yùn)動過程中,是否存在點,使是以為直角邊的直角三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案