【題目】如圖,菱形ABCD中,點M、N分別在ADBC上,且AMCN,MNAC交于點O,連接DO,若∠BAC28°,則∠ODC_____

【答案】62°

【解析】

證明,根據(jù)全等三角形的性質(zhì)得到AO=CO,根據(jù)菱形的性質(zhì)有:AD=DC,根據(jù)等腰三角形三線合一的性質(zhì)得到DOAC,即∠DOC=90°.根據(jù)平行線的性質(zhì)得到∠DCA=28°,根據(jù)三角形的內(nèi)角和即可求解.

四邊形ABCD是菱形,

AD//BC,

中,

,

;

AO=CO,

AD=DC,

DOAC,

∴∠DOC=90°.

ADBC,

∴∠BAC=DCA.

∵∠BAC=28°,∠BAC=DCA.

∴∠DCA=28°,

∴∠ODC=90°-28°=62°.

故答案為62°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點,點A在點B的左邊,與y軸交于點C,點D是拋物線的頂點,且A(﹣6,0),D(﹣2,﹣8).

(1)求拋物線的解析式;

(2)點P是直線AC下方的拋物線上一動點,不與點A、C重合,求過點Px軸的垂線交于AC于點E,求線段PE的最大值及P點坐標(biāo);

(3)在拋物線的對稱軸上足否存在點M,使得ACM為直角三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】,則的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(x-1)(x-2)(x-3)(x-4)=48.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一拱橋的截面呈拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,拱橋與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m景觀燈.

1)求拋物線的解析式;

2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點.

(1)求證:AB是⊙O的直徑;

(2)判斷DE與⊙O的位置關(guān)系,并加以證明;

(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設(shè)CP=t(0<t<10).

(1)請直接寫出B、C兩點的坐標(biāo)及拋物線的解析式;

(2)過點PPEBC,交拋物線于點E,連接BE,當(dāng)t為何值時,∠PBE=OCD

(3)點Qx軸上的動點,過點PPMBQ,交CQ于點M,作PNCQ,交BQ于點N,當(dāng)四邊形PMQN為正方形時,請求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC中,ACB=90°,AC=BC,點E是BC上一點,連接AE.

(1)如圖1,當(dāng)∠BAE=15°,CE=時,求AB的長.

(2)如圖2,延長BC至D,使DC=BC,將線段AE繞點A順時針旋轉(zhuǎn)90°得線段AF,連接DF,過點B作BGBC,交FC的延長線于點G,求證:BG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生下學(xué)期參加社區(qū)活動的情況,學(xué)校隨機調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

活動次數(shù)x

頻數(shù)

頻率

0<x3

10

0.20

3<x6

a

0.24

6<x9

16

0.32

9<x12

m

b

12<x15

4

0.08

15<x18

2

n

根據(jù)以上圖表信息,解答下列問題:

1)表中a=___b=___;

2)請把頻數(shù)分布直方圖補充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));

3)若該校共有1500名學(xué)生,請估計該校在下學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊答案