【題目】某校根據(jù)課程設(shè)置要求,開設(shè)了數(shù)學類拓展性課程. 為了解學生最喜歡的課程內(nèi)容,隨機抽取了部分學生進行問卷調(diào)查(每人必須且只選其中一項),并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖(不完整). 請根據(jù)圖中信息回答問題:

1)求的值.

2)補全條形統(tǒng)計圖.

【答案】1m=25%, n=15%;(2)見解析

【解析】

1)先用選A的人數(shù)除以其所占的百分比即可求得被調(diào)查的總?cè)藬?shù),然后根據(jù)百分比=其所對應(yīng)的人數(shù)÷總?cè)藬?shù)分別求出mn的值;
2)先求出選D的人數(shù),再用總數(shù)減去其他各小組的人數(shù)即可求得選E的人數(shù),從而補全條形統(tǒng)計圖;

解:(1)觀察條形統(tǒng)計圖與扇形統(tǒng)計圖知:選A的有12人,占20%,
故總?cè)藬?shù)有12÷20%=60人,
m=15÷60×100%=25%
n=9÷60×100%=15%
2)選D的有60×30%=18人,選E的有60-12-15-9-18=6人,
故條形統(tǒng)計圖補充為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】天空中有一個靜止的廣告氣球C,從地面A點測得C點的仰角為45°,從地面B測得仰角為60°,已知AB=20米,點C和直線AB在同一鉛垂平面上,求氣球離地面的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店購進一批甲、乙兩種款型襯衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30.

(1)求甲、乙兩種款型的襯衫各購進多少件?

(2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型剩余的按標價的五折降價銷售,很快全部售完。求售完這批襯衫商店共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動點A從原點出發(fā)向數(shù)軸負方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,運動到3秒鐘時,兩點相距15個單位長度.已知動點A、B的運動速度比之是32(速度單位:1個單位長度/秒).

1)求兩個動點運動的速度;

2A、B兩點運動到3秒時停止運動,請在數(shù)軸上標出此時AB兩點的位置;

3)若A、B兩點分別從(2)中標出的位置再次同時開始在數(shù)軸上運動,運動的速度不變,運動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點之間相距4個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當點D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學思考

如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年元月的日歷表中,某一天對應(yīng)的號數(shù)的上、下、左、右四個數(shù)的和為.

1)如果某一天是號,請用含 的代數(shù)式把表示出來;

2的值可能是96嗎?如果可能,求出這一天上、下、左、右四天,如果不可能,請說明理由;

3的值可能是28嗎?如果可能,求出這一天上、下、左、右四天,如果不可能,請說明理由.

星期日

星期一

星期二

星期三

星期四

星期五

星期六

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品,當生產(chǎn)數(shù)量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產(chǎn)數(shù)量x(噸)的函數(shù)關(guān)系的圖象如圖所示.

1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

2)當生產(chǎn)這種產(chǎn)品每噸的成本為7萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角三角形ABC中,∠ACB=90°,EAB上一點,且CE=EB,ED⊥CBD,則下列結(jié)論中不一定成立的是( 。

A.AE=BEB.CE=ABC.∠CEB=2∠AD.AC=AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,對于點Px,y)和Qxy′),給出如下定義:若,則稱點Q為點P可控變點

例如:點(1,2)的可控變點為點(1,2),點(﹣1,3)的可控變點為點(﹣1﹣3).

1)若點(﹣1,﹣2)是一次函數(shù)圖象上點M可控變點,則點M的坐標為 ;

2)若點P在函數(shù))的圖象上,其可控變點”Q的縱坐標y′的取值范圍是,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習冊答案