【題目】如圖,已知拋物線y1=﹣x2+1,直線y2=﹣x+1,當x任取一值時,x對應(yīng)的函數(shù)值分別為y1,y2.若y1y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=2時,y1=﹣3,y2=﹣1,y1y2,此時M=﹣3.下列判斷中:

①當x0x1時,y1y2;

②當x0時,M=y1;

③使得M=x的值是﹣;

④對任意x的值,式子=1M總成立.

其中正確的是_____(填上所有正確的結(jié)論)

【答案】①②③④

【解析】①觀察圖象可知,當x<0或x>1時,y1<y2,故①正確,

②觀察圖象可知:當x<0時,M=y1,故②正確,

③M=時, =﹣x2+1,解得x=﹣(舍去),

=﹣x+1,解得x=,

∴x的值是﹣,故③正確,

④觀察圖象可知:M≤1,對任意x的值,式子=1﹣M總成立,故④正確,

故答案為:①②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉(zhuǎn)90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點DDE∥AC,交BCE點;過E點作EF⊥DE,交AB的延長線于F點.設(shè)AD=x,△DEF的面積為y,則能大致反映yx函數(shù)關(guān)系的圖象是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017安徽。┤鐖D,游客在點A處做纜車出發(fā),沿ABD的路線可至山頂D處,假設(shè)ABBD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長.

(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讓我們輕松一下,做一個數(shù)字游戲.第一步:取一個自然數(shù),計算;第二步:算出的各位數(shù)字之和得,計算;第三步:算出的各位數(shù)字之和得,計算;依此類推,則的值為  

A.26B.65C.122D.123

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列分式方程解應(yīng)用題:

某商場銷售某種商品,第一個月將此商品的進價加價20%作為銷售價,共獲利6000元。第二個月商場搞促銷活動,將商品的進價加10%作為銷售價,第二個月的銷售量比第一個月增加了100件,并且商場第二個月比第一個月多獲利2000元。問此商品進價是多少元?商場第二個月共銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為射線上一點,,兩點分別從兩點同時出發(fā),分別以個單位/秒和個單位/秒的速度在射線上沿方向運動,當點運動到點時,兩點同時停止運動,運動時間為,的中點,的中點,以下結(jié)論:①;②;③當時,;④兩點之間的距離是定值.其中正確的結(jié)論_______(填寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個全等的RtAOB、RtOCD分別位于第二、第一象限,∠ABO=∠ODC90°,OB、ODx軸上,且∠AOB30°,AB1

1)如圖1RtOCD可以看作由RtAOB先繞點O順時針旋轉(zhuǎn)   度,再繞斜邊中點旋轉(zhuǎn)   度得到的,C點的坐標是   ;

2)是否存在點E,使得以C、O、D、E為頂點的四邊形是平行四邊形,若存在,寫出E點的坐標;若不存在請說明理由.

3)如圖2將△AOC沿AC翻折,O點的對應(yīng)點落在P點處,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究如圖① 在四邊形ABCD中,∠BAD=BCD=90°,AB=AD,AECD于點E.若AE=10,求四邊形ABCD的面積.

應(yīng)用:如圖②,在四邊形ABCD中,∠ABC+ADC=180°,AB=AD,AEBC于點E.AE=19,BC=10,CD=6,則四邊形ABCD的面積為 .

查看答案和解析>>

同步練習(xí)冊答案