【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過(guò)點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
【答案】(1)證明見解析;(2)ED=EB,證明見解析;(3)CG=2.
【解析】
試題(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=30°,從而得出DE=BE;(2)、取AB的中點(diǎn)O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(3)、取AB的中點(diǎn)O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.
試題解析:(1)、證明:∵△CDE是等邊三角形, ∴∠CED=60°, ∴∠EDB=60°﹣∠B=30°,
∴∠EDB=∠B, ∴DE=EB;
(2)、解:ED=EB, 理由如下:取AB的中點(diǎn)O,連接CO、EO,
∵∠ACB=90°,∠ABC=30°, ∴∠A=60°,OC=OA, ∴△ACO為等邊三角形, ∴CA=CO,
∵△CDE是等邊三角形, ∴∠ACD=∠OCE,∴△ACD≌△OCE, ∴∠COE=∠A=60°,∴∠BOE=60°, ∴△COE≌△BOE, ∴EC=EB, ∴ED=EB;
(3)、取AB的中點(diǎn)O,連接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB, ∵EH⊥AB,
∴DH=BH=3,∵GE∥AB, ∴∠G=180°﹣∠A=120°, ∴△CEG≌△DCO, ∴CG=OD,
設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB, ∴4a=a+3+3, 解得,a=2,
即CG=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l的解析式為y=﹣x+b,它與坐標(biāo)軸分別交于A、B兩點(diǎn),其中點(diǎn)B坐標(biāo)為(0,4).
(1)求出A點(diǎn)的坐標(biāo);
(2)在第一象限的角平分線上是否存在點(diǎn)Q使得∠QBA=90°?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)動(dòng)點(diǎn)C從y軸上的點(diǎn)(0,10)出發(fā),以每秒1cm的速度向負(fù)半軸運(yùn)動(dòng),求出點(diǎn)C運(yùn)動(dòng)所有的時(shí)間t,使得△ABC為軸對(duì)稱圖形(直接寫答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)的普及,微信一種聊天軟件的興起,許多人抓住這種機(jī)會(huì),做起了“微商”,很多農(nóng)產(chǎn)品也改變了原來(lái)的銷售模式,實(shí)行了網(wǎng)上銷售,這不剛大學(xué)畢業(yè)的小明把自家的冬棗產(chǎn)品也放到了網(wǎng)上,他原計(jì)劃每天賣100斤冬棗,但由于種種原因,實(shí)際每天的銷售量與計(jì)劃量相比有出入,下表是某周的銷售情況超額記為正,不足記為負(fù)單位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計(jì)劃量的差值 |
|
|
|
|
|
|
|
(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣出 ______ 斤;
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售 ______ 斤;
(3)本周實(shí)際銷售總量達(dá)到了計(jì)劃數(shù)量沒(méi)有?
(4)若冬季每斤按8元出售,每斤冬棗的運(yùn)費(fèi)平均3元,那么小明本周一共收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x的圖象與二次函數(shù)y=﹣x2+3x圖象的對(duì)稱軸交于點(diǎn)B.
(1)寫出點(diǎn)B的坐標(biāo);
(2)已知點(diǎn)P是二次函數(shù)y=﹣x2+3x圖象在y軸右側(cè)部分上的一個(gè)動(dòng)點(diǎn),將直線y=﹣2x沿y軸向上平移,分別交x軸、y軸于C、D兩點(diǎn).若以CD為直角邊的△PCD與△OCD相似,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年俄羅斯世界杯組委會(huì)對(duì)世界杯比賽用球進(jìn)行抽查,隨機(jī)抽取了100個(gè)足球,檢測(cè)每個(gè)足球的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足部分分別用正、負(fù)數(shù)來(lái)表示,記錄如表:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
個(gè)數(shù) | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每個(gè)足球的質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?用你學(xué)過(guò)的方法合理解釋;
(2)若每個(gè)足球標(biāo)準(zhǔn)質(zhì)量為420克,則抽樣檢測(cè)的足球的總質(zhì)量是多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市九年級(jí)學(xué)生學(xué)業(yè)考試體育成績(jī),現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)進(jìn)行分段統(tǒng)計(jì)如下:
學(xué)業(yè)考試體育成績(jī)(分?jǐn)?shù)段)統(tǒng)計(jì)表 | ||
分?jǐn)?shù)段 | 人數(shù)(人) | 頻率 |
A | 48 | 0.2 |
B | a | 0.25 |
C | 84 | 0.35 |
D | 36 | b |
E | 12 | 0.05 |
分?jǐn)?shù)段為:(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)
根據(jù)上面提供的信息,回答下列問(wèn)題:
(1)在統(tǒng)計(jì)表中,a的值為 , b的值為 ,
(2)將統(tǒng)計(jì)圖補(bǔ)充完整(溫馨提示:作圖時(shí)別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(3)甲同學(xué)說(shuō):“我的體育成績(jī)是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù).”請(qǐng)問(wèn):甲同學(xué)的體育成績(jī)應(yīng)在什么分?jǐn)?shù)段內(nèi)?(填相應(yīng)分?jǐn)?shù)段的字母)
(4)如果把成績(jī)?cè)?0分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時(shí),求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請(qǐng)完善解答過(guò)程,并在括號(hào)內(nèi)填寫相應(yīng)的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列各式:定義一種新運(yùn)算“⊙”:
1⊙3=1×4+3=7,3⊙﹣1=3×4﹣1=11,5⊙4=5×4+4=24
4⊙(﹣3)=4×4﹣3=13,(﹣2)⊙(﹣5)=(﹣2)×4﹣5=﹣13,……
(1)寫出一般結(jié)論:a⊙b=_____;
(2)如果a≠b,那么a⊙b_____b⊙a(填“=”或“≠”)
(3)先化簡(jiǎn),再求值:(a﹣b)⊙(2a+3b).其中a=﹣,b=2019.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com