【題目】如圖,已知△ABC的周長(zhǎng)是20,OB和OC分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,且OD=3,則△ABC的面積是( )
A. 20 B. 25 C. 30 D. 35
【答案】C
【解析】
連接OA,過(guò)O作OE⊥AB于E,OF⊥AC于F,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得點(diǎn)O到AB、AC、BC的距離都相等(即OE=OD=OF),從而可得到△ABC的面積等于周長(zhǎng)的一半乘以3,代入即可求解.
如圖,連接OA,過(guò)O作OE⊥AB于E,OF⊥AC于F,
∵OB、OC分別平分∠ABC和∠ACB,
∴OE=OF=OD=3,
∵△ABC的周長(zhǎng)是20,OD⊥BC于D,且OD=3,
∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3
=×20×3=30,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,BC=2.點(diǎn)P從點(diǎn)A出發(fā)沿沿射線AB以1的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥BC交射線AC于點(diǎn)E,同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿BC的延長(zhǎng)線以1的速度運(yùn)動(dòng),連結(jié)BE、EQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t().
(1)求證:△APE是等邊三角形;
(2)直接寫出CE的長(zhǎng)(用含的代數(shù)式表示);
(3)當(dāng)點(diǎn)P在邊AB上,且不與點(diǎn)A、B重合時(shí),求證:△BPE≌△ECQ.
(4)在不添加字母和連結(jié)其它線段的條件下,當(dāng)圖中等腰三角形的個(gè)數(shù)大于3時(shí),直接寫出t的值和對(duì)應(yīng)的等腰三角形的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:
A | B | |
進(jìn)價(jià)(萬(wàn)元/套) | 1.5 | 1.2 |
售價(jià)(萬(wàn)元/套) | 1.65 | 1.4 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬(wàn)元,全部銷售后可獲毛利潤(rùn)9萬(wàn)元。
(毛利潤(rùn)=(售價(jià) - 進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的總資金不超過(guò)69萬(wàn)元,問(wèn)A種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王大爺飯后出去散步,從家中走20分鐘到離家900米的公園,與朋友聊天10分鐘后,用15分鐘返回家中.下面圖形表示王大爺離時(shí)間x(分)與離家距離y(米)之間的關(guān)系是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,直線y=8﹣2x與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,直線y=x+b與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,如果兩直線交于點(diǎn)P,且AC:CO=3:5(AO>CO)
(1)求點(diǎn)A、B的坐標(biāo)
(2)求直線y=x+b的函數(shù)解析式
(3)求四邊形COBP的面積S
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C、D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C、D、E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )
A.(4,2) B.(6,0) C.(6,3) D.(6,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和D的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至△ABP′,連接PP′,并延長(zhǎng)AP與BC相交于點(diǎn)Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:是最小的正整數(shù),且、滿足,請(qǐng)回答問(wèn)題:
()請(qǐng)直接寫出、、的值,______,____,______.
()數(shù)軸上、、三個(gè)數(shù)所對(duì)應(yīng)的分別為、、,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)、、同時(shí)開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),點(diǎn)和點(diǎn)分別以每秒個(gè)單位長(zhǎng)度和個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).
①經(jīng)過(guò)秒后,求出點(diǎn)與點(diǎn)之間的距離.
②經(jīng)過(guò)秒后,請(qǐng)問(wèn):的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理上;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)D在線段BC的延長(zhǎng)線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com