【題目】如圖,滑翔運動員在空中測量某寺院標志性高塔“云端塔”的高度,空中的點P距水平地面BE的距離為200米,從點P觀測塔頂A的俯角為33°,以相同高度繼續(xù)向前飛行120米到達點C,在C處觀測點A的俯角是60°,求這座塔AB的高度(結果精確到1米).(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,

【答案】74米.

【解析】

根據(jù)∠ACD60°,求得,從而求得PDPC+CD120+0.58AD,根據(jù)∠APD33°,可得ADPDtan33°,利用正切函數(shù)可求出AD的長,進而求得AB的長.

解:∵∠ACD60°,

,

PC120

PDPC+CD120+0.58AD,

∵∠APD33°,

ADPDtan33°,

AD=(120+0.58AD0.65,

AD126(米),

AB20012674米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學數(shù)學活動小組在學習了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m,坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E、A、C在同一水平線上,求建筑物BC的高.(結果保留整數(shù),參考數(shù)據(jù)tan50°=1.1918,cos50°=0.6428)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習《用頻率估計概率》這一節(jié)課后,數(shù)學興趣小組設計了摸球試驗:在一個不透明的盒子里裝有質(zhì)地大小都相同的紅球和黑球共個,將球攪勻后從中隨機摸出一個記下顏色,放回,再重復進行下一次試驗,下表是他們整理得到的試驗數(shù)據(jù):

摸球的次數(shù)

摸到紅球的次數(shù)

摸到紅球的頻率

1)試估計:盒子中有紅球 個;

2)若從盒子中一次性摸出兩個球,用畫樹狀圖或列表的方法求出一次性摸出的兩個球都是紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市要開展不忘初心,牢記使命主題演講比,某中學將參加本校選拔賽的50名選手的成績(滿分為100分,得分為正整數(shù))分成五組,并繪制了不完整的統(tǒng)計圖表.

分數(shù)段

頻數(shù)

頻率

69.575.5

9

0.18

75.581.5

m

0.16

81.587.5

14

0.28

87.593.5

16

n

93.599.5

3

0.06

1)表中n   ,并在圖中補全頻數(shù)直方圖.

2)甲同學的比賽成績是50位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在   分數(shù)段內(nèi);

3)選拔賽時,成績在93.599.5的三位選手中,男生2人,女生1人,學校從中隨機確定2名選手參加全市決賽,請用列表法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=90°,點Ax軸上,點B的坐標是(0,3),若點C恰好在反比例函數(shù)第一象限內(nèi)的圖象上,那么點C的坐標為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,M,N,P,Q分別為邊AB,BC,CDDA上的點(不與端點重合),對于任意矩形ABCD,下面四個結論中,

①存在無數(shù)個四邊形MNPQ是平行四邊形;

②存在無數(shù)個四邊形MNPQ是矩形;

③存在無數(shù)個四邊形MNPQ是菱形;

④至少存在一個四邊形MNPQ是正方形,

其中正確的結論的個數(shù)為( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點At,0),Bt+2,0),Cn1),若射線OC上存在點P,使得△ABP是以AB為腰的等腰三角形,就稱點P為線段AB關于射線OC的等腰點.

1)如圖,t0,

①若n0,則線段AB關于射線OC的等腰點的坐標是   ;

②若n0,且線段AB關于射線OC的等腰點的縱坐標小于1,求n的取值范圍;

2)若n,且射線OC上只存在一個線段AB關于射線OC的等腰點,則t的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,已知線段和點O,利用直尺和圓規(guī)作,使點O的內(nèi)心(不寫作法,保留作圖痕跡);

2)在所畫的中,若,則的內(nèi)切圓半徑是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展陽光體育一小時活動,按學校實際情況,決定開設A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運動項目.為了解學生最喜歡哪一種運動項目,隨機抽取了一部分學生進行調(diào)查,并將調(diào)查結果繪制成如下兩個統(tǒng)計圖.請結合圖中的信息解答下列問題:

(1)本次共調(diào)查了________名學生;

(2)在扇形統(tǒng)計圖中,“B”所在扇形的圓心角是________度;

(3)將條形統(tǒng)計圖補充完整;

(4)若該中學有1200名學生,喜歡籃球運動的學生約有________名.

查看答案和解析>>

同步練習冊答案