【題目】結(jié)論:直角三角形中,的銳角所對的直角邊等于斜邊的一半.

如圖①,我們用幾何語言表示如下:

∵在中,,,

.

你可以利用以上這一結(jié)論解決以下問題:

如圖②,在中,,,,,

1)求的面積;

2)如圖③,射線平分,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著射線的方向運(yùn)動,過點(diǎn)分別作,,.設(shè)點(diǎn)的運(yùn)動時(shí)間為秒,當(dāng)時(shí),求的值.

【答案】(1);(2)

【解析】

1)過點(diǎn)CCHAB于點(diǎn)H,則∠CAH=90°,即可求出∠ACH=30°,求出AH,根據(jù)勾股定理即可求解;

2)分兩種情況討論①當(dāng)點(diǎn)PABC內(nèi)部時(shí)②當(dāng)點(diǎn)PABC外部時(shí),連結(jié)PB、PC,利用面積法進(jìn)行求解即可.

1)過點(diǎn)CCHAB于點(diǎn)H,則∠CAH=90°,如圖②

∴∠ACH=30°

2)分兩種情況討論

①當(dāng)點(diǎn)PABC內(nèi)部時(shí),如圖③所示,連結(jié)PB、PC.

設(shè)PE=PF=PG=x

AM平分∠BAC

,

,

②當(dāng)點(diǎn)PABC外部時(shí),如圖④所示,連結(jié)PB、PC.

設(shè)PE=PF=PG=x,

,

解得

由①知,,

,

∴當(dāng)PE=PF=PG時(shí),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是(  )

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,ADBC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點(diǎn)落在C′的位置,BC=4,BC′的長為 (  )

A. 2 B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時(shí)距離乙地ykm,已知小紅駕車中途休息了1小時(shí),圖中的折線表示她在整個(gè)駕車過程中yx之間的函數(shù)關(guān)系.

1B點(diǎn)的坐標(biāo)為(    );

2)求線段AB所表示的yx之間的函數(shù)表達(dá)式;

3)小紅休息結(jié)束后,以60km/h的速度行駛,則點(diǎn)D表示的實(shí)際意義是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校教學(xué)樓(甲樓)的頂部E和大門A之間掛了一些彩旗.小穎測得大門A距甲樓的距離AB31cm,在A處測得甲樓頂部E處的仰角是31°.

(1)求甲樓的高度及彩旗的長度;(精確到0.01m

(2)若小穎在甲樓樓底C處測得學(xué)校后面醫(yī)院樓(乙樓)樓頂G處的仰角為40°,爬到甲樓樓頂F處測得乙樓樓頂G處的仰角為19°,求乙樓的高度及甲乙兩樓之間的距離.(精確到0.01m

(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,過頂點(diǎn)作射線.

1)當(dāng)射線外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,,.

①試證明是直角三角形;

②求線段的長.(用含的代數(shù)式表示)

2)當(dāng)射線內(nèi)部時(shí),如圖②,過點(diǎn)于點(diǎn),連結(jié),請寫出線段、的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:

1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有   人,在扇形統(tǒng)計(jì)圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有   人喜歡籃球項(xiàng)目.

2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級參加;@球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B⊙O的切線交直線AC于點(diǎn)D,點(diǎn)ECH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CFAB的延長線于G.

(1)求證:AEFD=AFEC;

(2)求證:FC=FB;

(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點(diǎn)C作直線lAB,點(diǎn)P是直線l上的一個(gè)動點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點(diǎn)DAB上方,且CDBP時(shí),求證:PC=AC;

(3)在點(diǎn)P的運(yùn)動過程中

①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

同步練習(xí)冊答案