【題目】已知點(diǎn)A為⊙O外一點(diǎn),連接AO,交⊙O于點(diǎn)P,AO=6.點(diǎn)B為⊙O上一點(diǎn),連接BP,過(guò)點(diǎn)A作CA⊥AO,交BP延長(zhǎng)線于點(diǎn)C,AC=AB.
(1)判斷直線AB與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若PC=4,求 PB的長(zhǎng).
(3)若在⊙O上存在點(diǎn)E,使△EAC是以AC為底的等腰三角形,則⊙O的半徑r的取值范圍是___________.
【答案】(1)AB與⊙O相切 ,理由見(jiàn)解析;(2);(3)
【解析】
(1)連接OB,有∠OPB=∠OBP,又AC=AB,則∠C=∠ABP,利用∠CAP=90°,即可得到結(jié)論成立;
(2)由AB=AC,利用勾股定理先求出半徑,作OH⊥BP與H,利用相似三角形的判定和性質(zhì),即可求出PB的長(zhǎng)度;
(3)根據(jù)題意得出OE=AC=AB=,利用OE=,即可求出取值范圍.
解:(1)連接OB,如圖:
∵OP=OB,
∴∠OPB=∠OBP=∠APC,
∵AC=AB,
∴∠C=∠ABP,
∵AC⊥AO,
∴∠CAP=90°,
∴∠C+∠APC=90°,
∴∠ABP+∠OBP=90°,
即OB⊥AB,
∴AB為切線;
(2)∵AB=AC
∴,
∴,
設(shè)半徑為r,則
解得:r=2;
作OH⊥BP與H,
則△ACP∽△HOP,
∴,即
∴,
∴;
(3)如圖,作出線段AC的垂直平分線MN,作OE⊥MN,
∴四邊形AOEM是矩形,
∴OE=AM=AC=AB=;
又∵圓O與直線MN有交點(diǎn),
OE=,
∴,
∴,
∴,
又∵圓O與直線AC相離,
∴r<6,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC中AB邊上一點(diǎn),以點(diǎn)O為圓心,OA的長(zhǎng)為半徑作⊙O,⊙O恰好經(jīng)過(guò)點(diǎn)C,且與邊BC,AB分別交于E,F兩點(diǎn).連接AE,過(guò)點(diǎn)E作⊙O的切線,交線段BF于點(diǎn)M,交AC的延長(zhǎng)線于點(diǎn)N,且EM=BM,EB=AO.
(1)求的度數(shù);
(2)求證:;
(3)若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】昌云中學(xué)計(jì)劃為地理興趣小組購(gòu)買(mǎi)大、小兩種地球儀,若購(gòu)買(mǎi)1個(gè)大地球儀和3個(gè)小地球儀需要136元;若購(gòu)買(mǎi)2個(gè)大地球儀和1個(gè)小地球儀需要132元.
(1)求每個(gè)大地球儀和每個(gè)小地球儀各多少元;
(2)昌云中學(xué)決定購(gòu)買(mǎi)以上兩種地球儀共30個(gè),總費(fèi)用不超過(guò)960元,那么昌云中學(xué)最多可以購(gòu)買(mǎi)多少個(gè)大地球儀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是射線BC上的一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),連接PD,作BQ垂直PD,交直線PD于點(diǎn)Q.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段PB,PD,BQ的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)P在AB上的不同位置,畫(huà)圖、測(cè)量,得到了線段PB,PD,BQ的長(zhǎng)度的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
BP/cm | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PD/cm | 2.00 | 1.22 | 0.98 | 1.56 | 2.43 | 3.38 | 4.35 |
BQ/cm | 0.00 | 0.78 | 1.94 | 1.82 | 1.56 | 1.41 | 1.31 |
在PB,PD,BQ的長(zhǎng)度這三個(gè)量中,確定 的長(zhǎng)度是自變量, 的長(zhǎng)度和 的長(zhǎng)度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫(huà)出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)PD>BQ時(shí),PB長(zhǎng)度范圍是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為 ;
(2)點(diǎn)A1的坐標(biāo)為 ;
(3)在旋轉(zhuǎn)過(guò)程中,求線段AB掃過(guò)的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,兩點(diǎn)之間線段最短,因此,連接兩點(diǎn)間線段的長(zhǎng)度叫做兩點(diǎn)間的距離;同理,連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短,因此,直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離.類(lèi)似地,連接曲線外一點(diǎn)與曲線上各點(diǎn)的所有線段中,最短線段的長(zhǎng)度,叫做點(diǎn)到曲線的距離.依此定義,如圖,在平面直角坐標(biāo)系中,點(diǎn)到以原點(diǎn)為圓心,以1為半徑的圓的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系Oxy中,四邊形OABC為矩形,點(diǎn)A、C分別在x軸、y軸上,點(diǎn)B在函數(shù)(,k為常數(shù)且)的圖象上,邊AB與函數(shù)的圖象交于點(diǎn)D,則陰影部分ODBC的面積為________(結(jié)果用含k的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,菱形與菱形的頂點(diǎn)重合,點(diǎn)在對(duì)角線上,且.
(1)問(wèn)題發(fā)現(xiàn):
的值為________;
(2)探究與證明:
將菱形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)角(),如圖二所示,試探究線段與之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)拓展與運(yùn)用:
菱形在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn),,三點(diǎn)在一條直線上時(shí),如圖三所示,連接并延長(zhǎng),交于點(diǎn),若,,則的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某劇場(chǎng)第一排座位分布圖:甲、乙、丙、丁四人購(gòu)票,所購(gòu)票分別為2,3,4,5.每人選座購(gòu)票時(shí),只購(gòu)買(mǎi)第一排的座位相鄰的票,同時(shí)使自己所選的座位之和最。绻础凹住⒁、丙、丁”的先后順序購(gòu)票,那么甲甲購(gòu)買(mǎi)1,2號(hào)座位的票,乙購(gòu)買(mǎi)3,5,7號(hào)座位的票,丙選座購(gòu)票后,丁無(wú)法購(gòu)買(mǎi)到第一排座位的票.若丙第一購(gòu)票,要使其他三人都能購(gòu)買(mǎi)到第一排座位的票,寫(xiě)出一種滿(mǎn)足條件的購(gòu)票的先后順序______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com