【題目】如圖,在平行四邊形中,為的中點(diǎn),于,設(shè).
(1)當(dāng)時(shí),求的長
(2)當(dāng)時(shí),
①求證:
②當(dāng)取得最大值時(shí),求的值.
【答案】(1);(2)①詳見解析;②
【解析】
(1)直接運(yùn)用三角函數(shù)的定義構(gòu)建方程,解答即可;
(2)①連接CF并交BA延長交的延長線于點(diǎn)G,先利用中點(diǎn)的定義和平行四邊形的性質(zhì)說明,然后利用全等三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí)即可解答;
②連接CF,并延長交BA的延長線于點(diǎn)G,設(shè),再由勾股定理得到,進(jìn)一步得到,然后求出CE和最大值,最后利用正弦的定義解答即可.
解:(1)在直角中,
(2)①連接CF并交BA延長交的延長線于點(diǎn)G,
∵F為AD的中點(diǎn),
在平行四邊形中,
在和中,
,
是邊GC中點(diǎn).
是AD的中點(diǎn),
在中,
又
②連接CF,并延長交BA的延長線于點(diǎn)G,
設(shè)
在中,
在中,
(①中已證)
當(dāng),即點(diǎn)E是AB的中點(diǎn)時(shí),取最大值,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,⊙O是△ABC的外接圓,AB=AC=10,BC=12,連接AO并延長交BC于點(diǎn)H.
(1)求外接圓⊙O的半徑;
(2)如圖2,點(diǎn)D是AH上(不與點(diǎn)A,H重合)的動(dòng)點(diǎn),以CD,CB為邊,作平行四邊形CDEB,DE分別交⊙O于點(diǎn)N,交AB邊于點(diǎn)M.
①連接BN,當(dāng)BN⊥DE時(shí),求AM的值;
②如圖3,延長ED交AC于點(diǎn)F,求證:NM·NF=AM·MB;
③設(shè)AM=x,要使-2<0成立,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙M(半徑為r),給出如下定義:若點(diǎn)P關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為Q,且r≤PQ≤3r,則稱點(diǎn)P為⊙M的稱心點(diǎn).
(1)當(dāng)⊙O的半徑為2時(shí),
①如圖1,在點(diǎn)A(0,1),B(2,0),C(3,4)中,⊙O的稱心點(diǎn)是 ;
②如圖2,點(diǎn)D在直線yx上,若點(diǎn)D是⊙O的稱心點(diǎn),求點(diǎn)D的橫坐標(biāo)m的取值范圍;
(2)⊙T的圓心為T(0,t),半徑為2,直線yx+1與x軸,y軸分別交于點(diǎn)E,F.若線段EF上的所有點(diǎn)都是⊙T的稱心點(diǎn),直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入﹣成本);并求出售價(jià)為多少元時(shí)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=-x2+(m-1) x+m (m為常數(shù)),其頂點(diǎn)為M.
(1)請(qǐng)判斷該函數(shù)的圖像與x軸公共點(diǎn)的個(gè)數(shù),并說明理由;
(2)當(dāng)-2≤m≤3時(shí),求該函數(shù)的圖像的頂點(diǎn)M縱坐標(biāo)的取值范圍;
(3)在同一坐標(biāo)系內(nèi)兩點(diǎn)A(-1,-1)、B(1,0),△ABM的面積為S,當(dāng)m為何值時(shí),S的面積最小?并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學(xué)生選擇,每門課程被選到的機(jī)會(huì)均等.
(1)學(xué)生小紅計(jì)劃選修兩門課程,請(qǐng)寫出所有可能的選法;
(2)若學(xué)生小明和小剛各計(jì)劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,對(duì)角線交于點(diǎn)為上任意點(diǎn),為中點(diǎn),則的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】碑林書法社小組用的書法練習(xí)紙(毛邊紙可以到甲商店購買,也可以到乙商店購買已知兩商店的標(biāo)價(jià)都是每刀20元(每刀100張),但甲商店的優(yōu)惠條件是:若購買不超過10刀,則按標(biāo)價(jià)買,購買10以上,從第11刀開始按標(biāo)價(jià)的七折賣;乙商店的優(yōu)惠條件是:購買一只9元的毛筆,從第一刀開始按標(biāo)價(jià)的八五折賣.購買刀數(shù)為(刀),在甲商店購買所需費(fèi)用為元,在乙商店購買所需費(fèi)用為元.
(1)寫出、與之間的函數(shù)關(guān)系式.
(2)求在乙商店購買所需總費(fèi)用小于甲商店購買所需總費(fèi)用時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在歌唱比賽中,一位歌手分別轉(zhuǎn)動(dòng)如下的兩個(gè)轉(zhuǎn)盤(每個(gè)轉(zhuǎn)盤都被分成3等份)一次,根據(jù)指針指向的歌曲名演唱兩首曲目.
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤①時(shí),該轉(zhuǎn)盤指針指向歌曲“3”的概率是 ;
(2)若允許該歌手替換他最不擅長的歌曲“3”,即指針指向歌曲“3”時(shí),該歌手就選擇自己最擅長的歌曲“1”, 請(qǐng)用樹形圖或列表法中的一種,求他演唱歌曲“1”和“4”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com