【題目】如圖,在矩形ABCD中,AB=4,BC=3,點O為對角線BD的中點,點P從點A出發(fā),沿折線AD﹣DO﹣OC以每秒1個單位長度的速度向終點C運(yùn)動,當(dāng)點P與點A不重合時,過點P作PQ⊥AB于點Q,以PQ為邊向右作正方形PQMN,設(shè)正方形PQMN與△ABD重疊部分圖形的面積為S(平方單位),點P運(yùn)動的時間為t(秒).
(1)求點N落在BD上時t的值;
(2)直接寫出點O在正方形PQMN內(nèi)部時t的取值范圍;
(3)當(dāng)點P在折線AD﹣DO上運(yùn)動時,求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出直線DN平分△BCD面積時t的值.
【答案】(1);(2)2<t< ;(3)見解析; (4)t的值為 、 、 .
【解析】
試題(1)根據(jù)條件證明△DPN∽△DQB然后利用對應(yīng)邊成比例得出關(guān)于t的方程,解方程即可;(2)只需考慮求出兩個臨界位置①M(fèi)N經(jīng)過點O,②點P與點O重合下t的值即可;(3)①分0<t,<t≤6,6<t≤11三種情況討論,根據(jù)圖形面積公式或和差關(guān)系即可用t表示出面積s;②因為點P在折線AD-DO運(yùn)動,所以可分點P在AD上,點P在DO上,兩種情況討論.
試題解析:(1)當(dāng)點N落在BD上時,
∵四邊形PQMN是正方形,∴PN∥QM,PN=PQ=t.
∴△DPN∽△DQB.∴.
∵PN=PQ=PA=t,DP=6﹣t,QB=AB=8,∴.∴t=
∴當(dāng)t=時,點N落在BD上. (2分)
(2)當(dāng)點O在正方形PQMN內(nèi)部時,t的范圍是4<t<11(5分)
(3)①當(dāng)0<t時,如圖4.
S=S正方形PQMN=PQ2=PA2=t2.
當(dāng)<t≤6時,如圖5,
∵tan∠ADB==,∴=.∴PG=8﹣t.
∴GN=PN﹣PG=t﹣(8﹣t)=﹣8.
∵tan∠NFG=tan∠ADB=,∴.
∴NF=GN=(﹣8)=t﹣6.
∴S=S正方形PQMN﹣S△GNF=t2﹣×(﹣8)×(t﹣6)
=﹣t2+14t﹣24.
當(dāng)6<t≤11時,如圖6,
∵四邊形PQMN是正方形,四邊形ABCD是矩形.
∴∠PQM=∠DAB=90°.∴PQ∥AD.∴△BQP∽△BAD.
∴==.∵BP=16﹣t,BD=10,BA=8,AD=6,
∴.∴BQ=,PQ=.
∴QM=PQ=.∴BM=BQ﹣QM=.
∵tan∠ABD=,∴FM=BM=.
∴S=S梯形PQMF=(PQ+FM)QM=[+]
=(16﹣t)2=t2-
綜上所述:當(dāng)0<t≤時,S=t2.
當(dāng)<t≤6時,S=﹣t2+14t﹣24.
當(dāng)6<t≤11時,S=t2-
②當(dāng)直線DN平分△BCD面積時,t的值為、
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1是AD∥BC的一張紙條,按圖1→圖2→圖3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為( 。
A.120°B.108°C.126°D.114°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黔東南州某校吳老師組織九(1)班同學(xué)開展數(shù)學(xué)活動,帶領(lǐng)同學(xué)們測量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,某天在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請你根據(jù)這些數(shù)據(jù)求電線桿的高AB.
(結(jié)果精確到1m,參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊AD繞點A順時針旋轉(zhuǎn)角度m(0°<m<360°),得到線段AP,連接PB,PC.當(dāng)△BPC是等腰三角形時,m的值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進(jìn)了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進(jìn)價比一臺B型空氣凈化器的進(jìn)價多300元,用7500元購進(jìn)A型空氣凈化器和用6000元購進(jìn)B型空氣凈化器的臺數(shù)相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進(jìn)價各為多少元?
(2)在銷售過程中,A型空氣凈化器因為凈化能力強(qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進(jìn)行降價銷售,經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎(chǔ)上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應(yīng)將B型空氣凈化器的售價定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構(gòu)成各種拼圖.
(1)若乙固定在E處,移動甲后黑色方塊構(gòu)成的拼圖是軸對稱圖形的概率是________.
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構(gòu)拼圖是軸對稱圖形的概率.
②黑色方塊所構(gòu)拼圖是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個幾何體由大小相同的棱長為1的小立方塊搭成,從上面看到幾何體的形狀如圖所示,其中小正方形中的數(shù)字表示該位置的小立方塊的個數(shù).
(1)請畫出從正面和從左面看到這個幾何體的形狀.
(2)求這個幾何體的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分別為AC、CD的中點,∠D=α,則∠BEF的度數(shù)為_____(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某出租車司機(jī)從公司出發(fā),在東西方向的人民路上連續(xù)接送批客人,行駛路程記錄如下(規(guī)定向東為正,向西為負(fù),單位:):
第批 | 第批 | 第批 | 第批 | 第批 |
(1)接送完第批客人后,該駕駛員在公司什么方向,距離公司多少千米?
(2)若該出租車每千米耗油升,那么在這過程中共耗油多少升?
(3)若該出租車的計價標(biāo)準(zhǔn)為:行駛路程不超過收費(fèi)元,超過的部分按每千米元收費(fèi),在這過程中該駕駛員共收到車費(fèi)多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com