【題目】1)如圖1.在△ABC中,B=60°,DAC和∠ACE的角平分線交于點(diǎn)O,則∠O=     °,

2)如圖2,若∠B,其他條件與(1)相同,請用含α的代數(shù)式表示∠O的大小;

3)如圖3,若∠B,,則∠P=     (用含α的代數(shù)式表示).

【答案】1)∠O=60°;(290°-;(3

【解析】

1)由題意利用角平分線的性質(zhì)和三角形內(nèi)角和為180°進(jìn)行分析求解;

2)根據(jù)題意設(shè)∠BAC=β∠ACB=γ,則α+β+γ=180°,利用角平分線性質(zhì)和外角定義找等量關(guān)系,用含α的代數(shù)式表示∠O的大小;

3)利用(2)的條件可知n=2時(shí),∠P=,再將2替換成n即可分析求解.

解:(1)因?yàn)椤?/span>DAC∠ACE的角平分線交于點(diǎn)O,且∠B=60°,

所以

∠O=60°.

2)設(shè)∠BAC=β,∠ACB=γ,則α+β+γ=180°

∵∠ACE△ABC的外角,

∴∠ACE=∠B+∠BAC=α+β

∵CO平分∠ACE

同理可得:

∵∠O+∠ACO+∠CAO=180°

;

3∵∠B=α,,

由(2)可知n=2時(shí),有∠P==,將2替換成n即可,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的頂點(diǎn)在雙曲線的圖象上,直角邊軸上,,,,連接,,則的值是(

A. 4 B. -4 C. 2 D. -2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一名在校大學(xué)生利用互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價(jià)10/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于16/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示.

(1)yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)求每天的銷售利潤W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價(jià)為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,ADC=ACB=90°,EAB的中點(diǎn),

(1)求證:AC2=ABAD;

(2)求證:△AFD∽△CFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AHEF于點(diǎn)H,AH=10,連接BD,分別交AE、AH、AF于點(diǎn)P、G、Q.

(1)求CEF的周長;

(2)若EBC的中點(diǎn),求證:CF=2DF;

(3)連接QE,求證:AQ=EQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為準(zhǔn)備半期考表彰的獎品,計(jì)劃從友誼超市購買筆記本和水筆共40件.在獲知某網(wǎng)店有“雙十一”促銷活動后,決定從該網(wǎng)店購買這些獎品.已知筆記本和水筆在這兩家商店的零售價(jià)分別如下表,且在友誼超市購買這些獎品需花費(fèi)125元.

1)班級購買的筆記本和水筆各多少件?

2)求從網(wǎng)店購買這些獎品可節(jié)省多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)關(guān)系中,的增大而減小的是(

A.長方形的長一定時(shí),其面積與寬的函數(shù)關(guān)系

B.高速公路上勻速行駛的汽車,其行駛的路程與行駛時(shí)間的函數(shù)關(guān)系

C.如圖1,在平面直角坐標(biāo)系中,點(diǎn),的面積與點(diǎn)的橫坐標(biāo)的函數(shù)關(guān)系

D.如圖2,我市某一天的氣溫(度)與時(shí)間(時(shí))的函數(shù)關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCDAB的中點(diǎn),連接CE過點(diǎn)BBHCEF,ACG,ADH.下列說法 ②點(diǎn)FGB的中點(diǎn); ; ,其中正確的結(jié)論的序號是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=BC,BD平分∠CBAAC于點(diǎn)D,DEAB于點(diǎn)E,且DEA的周長為2019cm,則AB=______.

查看答案和解析>>

同步練習(xí)冊答案