【題目】某校九年級(1)班全體學生上周末進行體育測試的成績(滿分70分)統(tǒng)計如表:

成績(分)

45

50

55

60

65

68

70

人數(shù)(人)

2

6

10

7

6

5

4

根據(jù)表中的信息判斷,下列結論中錯誤的是(

A. 該班一共有40名同學

B. 該班學生這次測試成績的眾數(shù)是55

C. 該班學生這次測試成績的中位數(shù)是60

D. 該班學生這次測試成績的平均數(shù)是59

【答案】D

【解析】分析:根據(jù)表格將各分數(shù)的人數(shù)相加即可求出總人數(shù),因為眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的,根據(jù)表格55分出現(xiàn)次數(shù)最多,即這組數(shù)據(jù)眾數(shù)是55,因為一組數(shù)據(jù)的中位數(shù)是將一組數(shù)據(jù)按照大小順序排列后,最中間或最中間兩個數(shù)的平均數(shù),40個數(shù)據(jù),找第20和第21個數(shù)據(jù),求它們的平均數(shù)即可,根據(jù)加權平均數(shù)的公式即可求出這組數(shù)據(jù)的平均數(shù).

詳解:A選項,該班一共有2+6+10+7+6+5+4=40(名)所以A正確,

B選項, 因為眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的,根據(jù)表格55分出現(xiàn)次數(shù)最多,即這組數(shù)據(jù)眾數(shù)是55,所以B選項正確,

C選項, 因為一組數(shù)據(jù)的中位數(shù)是將一組數(shù)據(jù)按照大小順序排列后,最中間或最中間兩個數(shù)的平均數(shù),根據(jù)表格這組數(shù)據(jù)最中間兩個數(shù)據(jù)是60,所以該班學生這次測試成績的中位數(shù)是60分,所以C選項正確,

D選項,,該班學生這次測試成績的平均數(shù)是59.25分,所以D選項不正確,故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形OABC的兩邊OA、OC分別落在x軸、y軸的正半軸上,等腰Rt△ADE的兩個頂點D、E和正方形頂點B三點在一條直線上.

(1)如圖1,連接OD,求證:△OAD≌△BAE;

(2)如圖2,連接CD,求證:BE﹣DE=CD;

(3)如圖3,當圖1中的Rt△ADE的頂點D與點B重合時,點E正好落在x軸上,F(xiàn)為線段OC上一動點(不與O、C重合),G為線段AF的中點,若CG⊥GK交BE于點K時,請問∠KCG的大小是否變化?若不變,請求其值;若改變,求出變化的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,平分平分,相交于點,且,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,過AD的中點O作EF⊥AD,分別交AB、AC于點E、F,連接DE、DF.
(1)判斷四邊形AFDE是什么四邊形?請說明理由;
(2)若BD=8,CD=3,AE=4,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)如圖,在等腰直角三角形MNC中,CNMN,將MNC繞點C順時針旋轉60°,得到ABC,連接AM,BM,BMAC于點O.

(1)NCO的度數(shù)為________;

(2)求證:CAM為等邊三角形;

(3)連接AN,求線段AN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班開展了為期一周的“敬老愛親”社會活動,并根據(jù)學生做家務的時間來評價他們在活動中的表現(xiàn).老師調查了全班50名學生在這次活動中做家務的時間,并將統(tǒng)計的時間(單位:小時)分成5組:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成兩幅不完整的統(tǒng)計圖(如圖).

請根據(jù)圖中提供的信息,解答下列問題:

(1)這次活動中學生做家務時間的中位數(shù)所在的組是____________

(2)補全頻數(shù)分布直方圖;

(3)該班的小明同學這一周做家務2小時,他認為自己做家務的時間比班里一半以上的同學多,你認為小明的判斷符合實際嗎?請用適當?shù)慕y(tǒng)計知識說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,l是過A的一條直線,BD⊥AED,CE⊥AEE.求證:

(1)當直線l繞點A旋轉到如圖1位置時,試說明:DE=BD+CE.

(2)若直線l繞點A旋轉到如圖2位置時,試說明:DE=BD﹣CE.

(3)若直線l繞點A旋轉到如圖3位置時,試問:BDDE,CE具有怎樣的等量關系?請寫出結果,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BE=4,CD=6,則DE的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

1)求出點A、點B運動的速度,并在數(shù)軸上標出AB兩點從原點出發(fā)運動3秒時的位置;

2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?

3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

同步練習冊答案