【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

(1)今年5月份A款汽車每輛售價(jià)多少萬元?

(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)為7.5萬元,B款汽車每輛進(jìn)價(jià)為6萬元,公司預(yù)計(jì)用不多于105萬元且不少于99萬元的資金購(gòu)進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?

(3)如果B款汽車每輛售價(jià)為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時(shí),哪種方案對(duì)公司更有利?

【答案】1)今年5月份A款汽車每輛售價(jià)m萬元;

2)共有8種進(jìn)貨方案;

3)當(dāng)a=0.5時(shí),(2)中所有方案獲利相同.此時(shí),購(gòu)買A款汽車3輛,B款汽車12輛時(shí)對(duì)公司更有利.

【解析】試題分析:(1)求單價(jià),總價(jià)明顯,應(yīng)根據(jù)數(shù)量來列等量關(guān)系.等量關(guān)系為:今年的銷售數(shù)量=去年的銷售數(shù)量.

2)關(guān)系式為:99≤A款汽車總價(jià)+B款汽車總價(jià)≤105

3)方案獲利相同,說明與所設(shè)的未知數(shù)無關(guān),讓未知數(shù)x的系數(shù)為0即可;多進(jìn)B款汽車對(duì)公司更有利,因?yàn)?/span>A款汽車每輛進(jìn)價(jià)為7.5萬元,B款汽車每輛進(jìn)價(jià)為6萬元,所以要多進(jìn)B款.

解:(1)設(shè)今年5月份A款汽車每輛售價(jià)x萬元.根據(jù)題意得:

=,

解得:x=9

經(jīng)檢驗(yàn)知,x=9是原方程的解.

所以今年5月份A款汽車每輛售價(jià)9萬元.

2)設(shè)A款汽車購(gòu)進(jìn)y輛.則B款汽車每輛購(gòu)進(jìn)(15﹣y)輛.根據(jù)題意得:

解得:6≤y≤10,

所以有5種方案:

方案一:A款汽車購(gòu)進(jìn)6輛;B款汽車購(gòu)進(jìn)9輛;

方案二:A款汽車購(gòu)進(jìn)7輛;B款汽車購(gòu)進(jìn)8輛;

方案三:A款汽車購(gòu)進(jìn)8輛;B款汽車購(gòu)進(jìn)7輛;

方案四:A款汽車購(gòu)進(jìn)9輛;B款汽車購(gòu)進(jìn)6輛;

方案五:A款汽車購(gòu)進(jìn)10輛;B款汽車購(gòu)進(jìn)5輛.

3)設(shè)利潤(rùn)為W則:W=8﹣6×15﹣y﹣a15﹣y+9﹣7.5y

=30﹣2y﹣a15﹣y+1.5y

=30﹣a15﹣y﹣0.5y

方案一:W=30﹣a15﹣6﹣0.5×6=30﹣9a﹣3=27﹣9a

方案二:W=30﹣a15﹣7﹣0.5×7=30﹣8a﹣3.5=26.5﹣8a

方案三:W=30﹣a15﹣8﹣0.5×8=30﹣7a﹣4=26﹣7a

方案四:W=30﹣a15﹣9﹣0.5×9=30﹣6a﹣4.5=25.5﹣6a

方案五:W=30﹣a15﹣10﹣0.5×10=30﹣5a﹣5=25﹣5a

27﹣9a=26.5﹣8a a=0.5

方案一對(duì)公司更有利.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

(1)如圖①,在ABC中,∠A=120°,AB=AC=5,則ABC的外接圓半徑R的值為

問題探究

(2)如圖②,O的半徑為13,弦AB=24,MAB的中點(diǎn),P是⊙O上一動(dòng)點(diǎn),求PM的最大值.

問題解決

(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,BAC=60°,BC所對(duì)的圓心角為60°.新區(qū)管委會(huì)想在BC路邊建物資總站點(diǎn)P,在AB、AC路邊分別建物資分站點(diǎn)E、F.也就是,分別在、線段ABAC上選取點(diǎn)P、E、F.由于總站工作人員每天要將物資在各物資站點(diǎn)間按P→E→F→P的路徑進(jìn)行運(yùn)輸,因此,要在各物資站點(diǎn)之間規(guī)劃道路PE、EFFP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點(diǎn)與所在道路之間的距離、路寬均忽略不計(jì)).

圖① 圖② 圖③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,BD是中線,延長(zhǎng)BCE,使CE=CD

1)求證:DB=DE;

2)過點(diǎn)DDF垂直BE,垂足為F,若CF=3,求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×qn的完美分解.并規(guī)定:

例如18可以分解成1×18,2×93×6,因?yàn)?/span>1819263,所以3×618的完美分解,所以F18)=

1F13)= ,F24)=

2)如果一個(gè)兩位正整數(shù)t,其個(gè)位數(shù)字是a,十位數(shù)字為,交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;

3)在(2)所得“和諧數(shù)”中,求Ft)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展陽光體育一小時(shí)活動(dòng),按學(xué)校實(shí)際情況,決定開設(shè)A:踢毽子;B:籃球;C:跳繩;D:乒乓球四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩個(gè)統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:

(1)本次共調(diào)查了________名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,“B”所在扇形的圓心角是________度;

(3)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該中學(xué)有1200名學(xué)生,喜歡籃球運(yùn)動(dòng)的學(xué)生約有________名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CABC,垂足為C,AC=2Cm,BC=6cm,射線BMBQ,垂足為B,動(dòng)點(diǎn)PC點(diǎn)出發(fā)以1cm/s的速度沿射線CQ運(yùn)動(dòng),點(diǎn)N為射線BM上一動(dòng)點(diǎn),滿足PN=AB,隨著P點(diǎn)運(yùn)動(dòng)而運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)_______秒時(shí),BCA與點(diǎn)P、NB為頂點(diǎn)的三角形全等.(2個(gè)全等三角形不重合)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角ABC,BDAC于點(diǎn)D,CEAB于點(diǎn)E,BDCE相交于點(diǎn)O,OB=OC

(1)求證:ABC是等腰三角形;

(2)判定點(diǎn)O是否在∠BAC的角平分線上,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖4,點(diǎn)AB,C在數(shù)軸上表示的數(shù)分別是1,,,點(diǎn)E到點(diǎn)B,C的距離相等,點(diǎn)P從點(diǎn)A出發(fā),向左運(yùn)動(dòng),速度是每秒0.3個(gè)單位長(zhǎng)度.設(shè)運(yùn)動(dòng)的時(shí)間是t秒.

1)點(diǎn)E表示的數(shù)是________

2)在t3,t4這兩個(gè)時(shí)刻,使點(diǎn)P更接近原點(diǎn)O的時(shí)間是哪一個(gè)?

3)若點(diǎn)P分別t8tp兩個(gè)不同的時(shí)刻,到點(diǎn)E的距離相等,求p的值;

4)設(shè)點(diǎn)M在數(shù)軸上表示的數(shù)是m,點(diǎn)N在數(shù)軸上表示的數(shù)是n,式子________的值可以體現(xiàn)點(diǎn)M和點(diǎn)N之間的距離,這個(gè)式子的值越小,兩個(gè)點(diǎn)的距離越近.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠B40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE40°,DE交線段AC于點(diǎn)E

1)若∠BDA115°,則∠BAD  °,∠DEC  °;

2)若DCAB,求證:ABD≌△DCE;

3)在點(diǎn)D的運(yùn)動(dòng)過程中,ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫出∠BDA的度數(shù);若不可以,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案