【題目】如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB、CD于M、N兩點.若AM=4,則BM=_____,ON=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小區(qū)要用籬笆圍成一個四邊形花壇、花壇的一邊利用足夠長的墻,另三邊所用的籬笆之和恰好為18米.圍成的花壇是如圖所示的四邊形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.設(shè)AB邊的長為x米.四邊形ABCD面積為S平方米.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).
(2)當(dāng)x是多少時,四邊形ABCD面積S最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點,A點的坐標(biāo)為(4,0),C點的坐標(biāo)為(0,6),點B在第一象限內(nèi),點P從原點O出發(fā),以每秒2個單位長度的速度沿著O﹣A﹣B﹣C﹣O的路線移動(即沿長方形移動一周).
(1)寫出B點的坐標(biāo);
(2)當(dāng)點P移動3秒時,求三角形OAP的面積;
(3)在移動過程中,當(dāng)點P到x軸距離為4個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地農(nóng)民一直保持著冬種油菜的習(xí)慣,利用農(nóng)閑冬種一季油菜.該地農(nóng)業(yè)部門對2017年的油菜籽生產(chǎn)成本、市場價格、種植面積和產(chǎn)量等進(jìn)行了調(diào)查統(tǒng)計,并繪制了如下的統(tǒng)計表與統(tǒng)計圖(如圖):
每畝生產(chǎn)成本 | 每畝產(chǎn)量 | 油菜籽市場價格 | 種植面積 |
110元 | 130千克 | 3元/千克 | 500 000畝 |
請根據(jù)以上信息解答下列問題:
(1)種植油菜每畝的種子成本是多少元?
(2)農(nóng)民冬種油菜每畝獲利多少元?
(3)2017年該地全縣農(nóng)民冬種油菜的總獲利是多少元?(結(jié)果用科學(xué)記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,對角線AC與BD交于點O,OE⊥AC交BC于點E,CE=3,則矩形ABCD的面積為( )
A.B.C.12D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:a=b=0.我們稱使得成立的一對數(shù)a,b為“和諧數(shù)對”,記為(a,b).
(1)若(3,x)是“和諧數(shù)對”,求x的值;
(2)若(m,n)是“和諧數(shù)對”,求代數(shù)式的值;
(3)有一個“和諧數(shù)對”(a,b),滿足a-b=1,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的中線BD,CE交于點O,F,G分別是BO,CO的中點.
(1)求證:四邊形DEFG是平行四邊形.
(2)若AB=AC,則四邊形DEFG是 (填寫特殊的平行四邊形).
(3)若四邊形DEFG是邊長為2的正方形,試求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構(gòu)造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為⑦的長方形周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點M、N位于第一象限,其中M的坐標(biāo)為(m,5),點N的坐標(biāo)(n,8),且m≥n.
(1)若MN與坐標(biāo)軸平行,則MN= ;
(2)若m、n、t滿足,MA⊥x軸,垂足為A,NB⊥x軸,垂足為B.
①求四邊形MABN的面積;
②連接MN、OM、ON,若△MON的面積大于26而小于30,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com