【題目】如圖1,在中,,,點(diǎn)分別是的中點(diǎn),連接.

(1)探索發(fā)現(xiàn):

1中,的值為_____________;的值為_________.

(2)拓展探究

若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化?請(qǐng)僅就圖2的情形給出證明.

(3)問題解決

當(dāng)旋轉(zhuǎn)至三點(diǎn)在同一直線時(shí),直接寫出線段的長(zhǎng).

【答案】(1); (2)見解析 (3)

【解析】

1)先判斷出∠AEB=90°,再判斷出∠B=30°,進(jìn)而的粗AE,再用勾股定理求出BE,即可得出結(jié)論;

2)先判斷出,進(jìn)而得出△ACD∽△BCE,即可得出結(jié)論;

3)分點(diǎn)D在線段AE上和AE的延長(zhǎng)線上,利用含30度角的直角三角形的性質(zhì)和勾股定理,最后用線段的和差求出AD,即可得出結(jié)論.

:

: (1)如圖1,連接AE,

AB=AC=2,點(diǎn)E分別是BC的中點(diǎn),

AE BC,

∴∠AEC=90° ,

AB=AC=2,∠BAC=120° ,

∴∠B=C=30°,

RtABE中,AE=AB=1,根據(jù)勾股定理得,BE

∵點(diǎn)EBC的中點(diǎn),

BC=2BE

∵點(diǎn)DAC的中點(diǎn),

AD=CD=AC=1,

故答案為:,;

(2)無變化,理由:

(1),CD=1,,

,

,

(1),ACB=DCE=30°,

∴∠ACD=BCE,

∴△ACD∽△BCE,

,

(3)線段BE的長(zhǎng)為,理由如下:

當(dāng)點(diǎn)D在線段AE上時(shí),

如圖2,過點(diǎn)CCFAEF,CDF=180°﹣∠CDE=60°,

∴∠DCF=30°,

,

,

RtAFC,AC=2,根據(jù)勾股定理得,,

AD=AF+DF=,

(2),,

當(dāng)點(diǎn)D在線段AE的延長(zhǎng)線上時(shí),

如圖3,過點(diǎn)CCGADAD的延長(zhǎng)線于G,

∵∠CDG=60°,

∴∠DCG=30°,

,

,

RtACG,根據(jù)勾股定理得,,

,

(2),,

:線段BE的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要在平行四邊形內(nèi)作一個(gè)菱形.甲,乙兩位同學(xué)的作法分別如下:

對(duì)于甲乙兩人的作法,可判斷( )

A.甲正確,乙錯(cuò)誤B.甲錯(cuò)誤,乙正確C.甲,乙均正確D.甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)

求一次函數(shù)和反比例函數(shù)的表達(dá)式;

請(qǐng)直接寫出時(shí),x的取值范圍;

過點(diǎn)B軸,于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某體育用品商店,購(gòu)買30根跳繩和60個(gè)毽子共用720元,購(gòu)買10根跳繩和50個(gè)毽子共用360元.

1)跳繩、毽子的單價(jià)各是多少元?

2)該店在青年節(jié)期間開展促銷活動(dòng),所有商品按同樣的折數(shù)打折銷售.節(jié)日期間購(gòu)買100根跳繩和100個(gè)毽子只需1800元,該店的商品按原價(jià)的幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中.,,,點(diǎn)的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn),沿所在直線把翻折到的位置,于點(diǎn).若為直角三角形,則的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行鋼筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來自七年級(jí),有來自九年級(jí),其他同學(xué)均來自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書法大賽,請(qǐng)通過列表或畫樹狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)決定開展課后服務(wù)活動(dòng),學(xué)校就“你最想開展哪種課后服務(wù)項(xiàng)目”問題進(jìn)行了隨機(jī)問卷調(diào)查,調(diào)查分為四個(gè)類別:.舞蹈;.繪畫與書法;.球類;.不想?yún)⒓樱F(xiàn)根據(jù)調(diào)查結(jié)果整理并繪制成如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:

1)這次統(tǒng)計(jì)共抽查了_________名學(xué)生,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)該校共有600名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中想?yún)⒓?/span>類活動(dòng)的人數(shù);

3)若甲、乙兩名同學(xué),各自從三個(gè)項(xiàng)目中隨機(jī)選一個(gè)參加,請(qǐng)用列表或畫樹狀圖的方法求他們選中同一項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】贛南臍橙果大形正,肉質(zhì)脆嫩,風(fēng)味濃甜芳香,深受大家的喜愛.某臍橙生產(chǎn)基地生產(chǎn)的禮品盒包裝的臍橙每箱的成本為30元,按定價(jià)50元出售,每天可銷售200.為了增加銷量,該生產(chǎn)基地決定采取降價(jià)措施,經(jīng)市場(chǎng)調(diào)研,每降價(jià)1元,日銷售量可增加20.

1)求出每天銷售量y(箱)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

2)若該生產(chǎn)基地每天要實(shí)現(xiàn)最大銷售利潤(rùn),每箱禮品盒包裝的臍橙應(yīng)定價(jià)多少元?每天可實(shí)現(xiàn)的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),連接,作分別交于點(diǎn),于點(diǎn)

(1)如圖1,若恰好平分,求證:;

(2)如圖2,若,取的中點(diǎn),連接于點(diǎn)

求證:①;②

查看答案和解析>>

同步練習(xí)冊(cè)答案