【題目】下列說法中正確的有()

(1) 鈍角的補角一定是銳角

(2) 過己知直線外一點作這條直線的垂線有且只有一條

(3) —個角的兩個鄰補角是對頂角

(4) 等角的補角相等

(5) 直線外一點A與直線上各點連接而成的所有線段中,最短線段的長是3cm,則

A到直線的距離是3cm .

A. 2 B. 3 C. 4 D. 5

【答案】D

【解析】①180°-鈍角=銳角,鈍角的補角一定是銳角,故①正確;
②過已知直線外一點作已知直線的垂線有且只有一條,故②正確;
③一個角的兩個鄰補角是對頂角,故③正確;
④等角的補角相等,故④正確;
⑤直線l外一點A與直線l上各點連接而成的所有線段中,最短線段的長是3cm,則點A到直線l的距離是3cm,故⑤正確;
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點.

1)求反比例函數(shù)的表達式和點B的坐標(biāo);

2P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點Py軸的平行線,交直線AB于點C,連接PO,若POC的面積為3,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠BAC與∠CBE的平分線相交于點P,BE=BC,PB與CE交于點H,PG∥AD交BC于F,交AB于G,下列結(jié)論:①GA=GP;②∠DCP=45°;③BP垂直平分CE;④GF+ FC =GA;其中正確的判斷有______________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)3x25x4;

(2)3(2x3)(x5)2(72x);

(3)x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是線段AB上一點,ACDBCE都是等邊三角形,連結(jié)AE,BD,設(shè)AECD于點F.

(1)求證:ACE≌△DCB;

(2)求證:ADF∽△BAD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】補全下列各題解題過程.

如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).

:∵EF∥AD 已知

∴∠2 = ( )

∵∠1=∠2 ( )

∴∠1=∠3 ( )

∴AB∥ ( )

∴∠BAC + = 180°( )

∵∠BAC = 70°(已知

∴∠AGD = _ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,12,要說明∠34180°,請補充完整解題過程并在括號內(nèi)填上相應(yīng)的依據(jù)

解:因為ADBC(已知),

所以∠13(              )

因為∠12(已知),

所以∠23.

所以BE________(              )

所以∠34180°(              )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,CE平分∠ACDABE點.

1)求證:ACE是等腰三角形;

2)若AC=13cmCE=24cm,求ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,FAB延長線上一點,點EBC上,且AE=CF

1)求證:ABE≌△CBF;

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案