【題目】在平面直角坐標(biāo)系,直線與y軸交于點(diǎn)A,與雙曲線交于點(diǎn).
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)將直線AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若的面積為6,求直線CD的表達(dá)式.
【答案】(1)B(3,2),k=6;(2)或
【解析】
(1)先代入求出m的值,然后將B的坐標(biāo)代入雙曲線的解析式中即可求出k的值.
(2)設(shè)直線CD的解析式為:,直線AB與x軸交于點(diǎn)E,然后求出點(diǎn)A、C、E的坐標(biāo),最后根據(jù)的面積即可求出b的值.
(1)將代入
,
將代入,
(2)設(shè)直線CD的解析式為:,
直線AB與x軸交于點(diǎn)E,
令和分別代入,
代入,
當(dāng)C在E的左側(cè)時(shí),
此時(shí)
,
當(dāng)C在E的右側(cè)時(shí),
此時(shí)
∴,
∴當(dāng)時(shí),
直線的CD的解析式為:,
當(dāng)時(shí),
直線的CD的解析式為:,
∴直線的CD的表達(dá)式為:或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+m-1=0.
(1)若此方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)Rt△ABC的斜邊長(zhǎng)c=,且兩直角邊a和b恰好是這個(gè)方程的兩個(gè)根時(shí),求Rt△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),CD平分∠ACB交⊙O于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:△ABD為等腰直角三角形;
(2)如圖2,ED繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到DE′,連接BE′,證明:BE′為⊙O的切線;
(3)如圖3,點(diǎn)F為弧BD的中點(diǎn),連接AF,交BD于點(diǎn)G,若DF=1,求AG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:①abc>0;②2a+b=0;③a﹣b+c>0;④當(dāng)x≠1時(shí),a+b>ax2+bx;⑤4ac<b2.其中正確的有( 。﹤(gè)
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上的動(dòng)點(diǎn),且滿足S△PAO=2S△PCO,求出P點(diǎn)的坐標(biāo);
(3)連接BC,點(diǎn)E是x軸一動(dòng)點(diǎn),點(diǎn)F是拋物線上一動(dòng)點(diǎn),若以B、C、E、F為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動(dòng)點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn).設(shè)AM的長(zhǎng)為x,則x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).
其中正確的結(jié)論有( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,雙曲線l:y=(x>0)過點(diǎn)A(a,b),B(2,1)(0<a<2);過點(diǎn)A作AC⊥x軸,垂足為C.
(1)求l的解析式;
(2)當(dāng)△ABC的面積為2時(shí),求點(diǎn)A的坐標(biāo);
(3)點(diǎn)P為l上一段曲線AB(包括A,B兩點(diǎn))的動(dòng)點(diǎn),直線l1:y=mx+1過點(diǎn)P;在(2)的條件下,若y=mx+1具有y隨x增大而增大的特點(diǎn),請(qǐng)直接寫出m的取值范圍.(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2008年實(shí)施國(guó)家知識(shí)產(chǎn)權(quán)戰(zhàn)略以來,我國(guó)具有獨(dú)立知識(shí)產(chǎn)權(quán)的發(fā)明專利日益增多.下圖顯示了2010﹣2013年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重.根據(jù)統(tǒng)計(jì)圖提供的信息,下列說法不合理的是( 。
A. 統(tǒng)計(jì)圖顯示了2010﹣2013年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重的情況
B. 我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重,由2010年的19.7%上升至2013年的32.1%
C. 2011年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重是28%
D. 2010﹣2013年我國(guó)發(fā)明專利申請(qǐng)量占世界發(fā)明專利申請(qǐng)量的比重逐年增長(zhǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com