【題目】如圖,△ABC內(nèi)接于⊙OCA=CBCDAB且與OA的延長(zhǎng)線交與點(diǎn)D

(1)判斷CD與⊙O的位置關(guān)系并說(shuō)明理由;

(2)若∠ACB=120°,OA=2,求CD的長(zhǎng).

【答案】(1) CD與⊙O相切;理由見(jiàn)解析;(2)2

【解析】

1)連接OC,證明OCDC,利用經(jīng)過(guò)半徑的外端且垂直于半徑的直線是圓的切線判定切線即可;
2)利用等弧所對(duì)的圓心角相等和題目中的已知角得到∠D=30°,利用解直角三角形求得CD的長(zhǎng)即可.

1CD與⊙O相切.理由如下:
如圖,連接OC,

CA=CB
,

OCAB
CDAB,
OCCD
OC是半徑,
CD與⊙O相切.
2)∵CA=CB,∠ACB=120°,
∴∠ABC=30°,
∴∠DOC=60°
∴∠D=30°,
OC=OD
OA=OC=2,
DO=4,
CD=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,對(duì)進(jìn)行循環(huán)往復(fù)的軸對(duì)稱變換,若原來(lái)點(diǎn)A坐標(biāo)是,則經(jīng)過(guò)第2019次變換后所得的A點(diǎn)坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不等實(shí)根

(1)求實(shí)數(shù)k的取值范圍.

(2)若方程兩實(shí)根滿足|x1|+|x2|=x1·x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 隨機(jī)拋擲一枚均勻的硬幣,落地后反面一定朝上。

B. 12,3,4,5中隨機(jī)取一個(gè)數(shù),取得奇數(shù)的可能性較大。

C. 某彩票中獎(jiǎng)率為,說(shuō)明買100張彩票,有36張中獎(jiǎng)。

D. 打開電視,中央一套正在播放新聞聯(lián)播。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy 中,直線 y x 4 x 軸、y 軸分別交于點(diǎn) A、點(diǎn) B,點(diǎn) D y 軸的負(fù)半軸上,若將DAB 沿著直線 AD 折疊,點(diǎn) B 恰好落在 x 軸正半軸上的點(diǎn) C.

1)求直線 CD 的表達(dá)式;

2)在直線 AB 上是否存在一點(diǎn) P,使得 SPCD SOCD?若存在,直接寫出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),當(dāng)△PMN周長(zhǎng)取最小值時(shí),則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.

填空:

①當(dāng)的長(zhǎng)度是____________時(shí),四邊形ABDE是菱形;

②當(dāng)的長(zhǎng)度是____________時(shí),△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)反比例函數(shù)構(gòu)造一個(gè)新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為雙鉤函數(shù)).給出下列幾個(gè)命題:

該函數(shù)的圖象是中心對(duì)稱圖形;

當(dāng)時(shí),該函數(shù)在時(shí)取得最大值-2

的值不可能為1;

在每個(gè)象限內(nèi),函數(shù)值隨自變量的增大而增大.

其中正確的命題是 .(請(qǐng)寫出所有正確的命題的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張.

(1)若從中隨機(jī)取出1張紙幣,求取出紙幣的金額是20元的概率;

(2)若從中隨機(jī)取出2張紙幣,求取出紙幣的總額可購(gòu)買一件51元的商品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案