精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知O為坐標原點,四邊形OABC為長方形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動.

(1)當△ODP是等腰三角形時,請直接寫出點P的坐標;

(2)求△ODP周長的最小值.(要有適當的圖形和說明過程)

【答案】P 的坐標為:(2.5,4)或(3,4)或(2,4)或(8 ,4);(2) △ODP周長=5+

【解析】試題分析:(1)當P1O=OD=5P2O=P2DP3D=OD=5P4D=OD=5,分別作P2E⊥OAE,DF⊥BCF,P4G⊥OAG,利用勾股定理P1C,OE,P3F,DG的值,就可以求出P的坐標;(2)作點D關于BC的對稱點D′,連接OD′交BCP,則這時的△POD的周長最小,即△POD的周長=OD′+OD,根據勾股定理得到OD′的長即可求得△POD的周長

試題解析:

1)當P1O=OD=5時,由勾股定理可以求得P1C=3,

P2O=P2D時,作P2E⊥OA,∴OE=ED=2.5

P3D=OD=5時,作DF⊥BC,由勾股定理,得P3F=3,∴P3C=2

P4D=OD=5時,作P4G⊥OA,由勾股定理,得DG=3,∴OG=8

∴P12,4),P22.5,4),P33,4),P484);

(2) 作點D關于BC的對稱點D′,連接OD′交BCP

則這時的△POD的周長最小,此時△POD的周長=OD′+OD

∵點DOA的中點,

∴OD=5,DD′=8,

OD′=

∴△POD的周長=+5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】△ABC在平面直角坐標系中的位置如圖所示.

(1)作出△ABC關于y軸對稱的△ABlCl

(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正比例函數ykx經過點A,點A在第四象限,過點AAHx軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3

1)求正比例函數的表達式;

2)在x軸上能否找到一點M,使△AOM是等腰三角形?若存在,求點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中, AB =AC=24 cm, BC=16cmAD= BD.如果點P在線段BC上以 2 cm/s 的速度由B點向C點運動,同時,點 Q在線段CA上以v cm/s 的速度由C點向A點運動,那么當△BPD 與△CQP全等時,v =

A.3B.4C.2 4D.23

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象與軸相交于點、,與軸相交于點

求該函數的表達式;

為該函數在第一象限內的圖象上一點,過點,垂足為點,連接

求線段的最大值;

若以點、為頂點的三角形與相似,求點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經過幾秒,使PBQ的面積等于8cm2

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AD,BE分別是∠BAC,∠ABC的角平分線.

1)若∠C70°,∠BAC60°,則∠BED的度數是 ;若∠BED50°,則∠C的度數是

2)探究∠BED與∠C的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=2,點A在⊙O上,∠AMN=30°,B的中點,P是直徑MN上一動點,則PA+PB的最小值為( 。

A. B. C. 1 D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(4,5)、B(1,0)、C(4,0).

(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出A1點的坐標;

(2)y軸上求作一點P,使△PAB的周長最小,并求出點P的坐標及△PAB的周長最小值.

查看答案和解析>>

同步練習冊答案