【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求m,k,n的值;

(2)求ABC的面積.

【答案】(1) m4,k8,n4;(2ABC的面積為4

【解析】試題分析:(1)由點(diǎn)A的縱坐標(biāo)為2OC=2,由OD=OCOD=1、CD=3,根據(jù)△ACD的面積為6求得m=4,將A的坐標(biāo)代入函數(shù)解析式求得k,將點(diǎn)B坐標(biāo)代入函數(shù)解析式求得n;

2)作BE⊥AC,得BE=2,根據(jù)三角形面積公式求解可得.

試題解析:(1點(diǎn)A的坐標(biāo)為(m,2),AC平行于x軸,

∴OC=2AC⊥y軸,

∵OD=OC,

∴OD=1,

∴CD=3

∵△ACD的面積為6,

CDAC=6,

∴AC=4,即m=4,

則點(diǎn)A的坐標(biāo)為(4,2),將其代入y=可得k=8

點(diǎn)B2,n)在y=的圖象上,

∴n=4;

2)如圖,過點(diǎn)BBE⊥AC于點(diǎn)E,則BE=2,

∴SABC=ACBE=×4×2=4

△ABC的面積為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過點(diǎn)(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,m).

1)求m的值;

2)求一次函數(shù)y=kx+b的解析式;

3)求這兩個(gè)函數(shù)圖像與x軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班學(xué)生參加公民道德知識(shí)競(jìng)賽,將競(jìng)賽所取得的成績(jī)(得分取整數(shù))進(jìn)行整理后分成5組,并繪制成頻率分布直方圖,如下圖所示,請(qǐng)結(jié)合直方圖提供的信息,回答下列問

(1)該班共有多少名學(xué)生?

(2)60.5~70.5這一分?jǐn)?shù)段的頻數(shù)、頻率分別是多少?

(3)根據(jù)統(tǒng)計(jì)圖,提出一個(gè)問,并回答你所提出的問?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā)沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s點(diǎn)N的速度為2cm/s當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng)

1點(diǎn)M、N運(yùn)動(dòng)幾秒后M、N兩點(diǎn)重合?

2點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形AMN?

3當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入長(zhǎng)方形內(nèi)得到的,∠BAC=90°,AB=6,AC=8,點(diǎn)D,E,F(xiàn),G,H,I都在長(zhǎng)方形KLMJ的邊上,則長(zhǎng)方形KLMJ的面積為(

A. 360 B. 400 C. 440 D. 484

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,∠A=25°,B=40°.

(1)求作:⊙O,使⊙O經(jīng)過A、C兩點(diǎn),且圓心落在AB邊上;

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法.)

(2)求證:BC是(1)中所作⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(/)

45

30

租金(/)

400

280

紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時(shí)送七年級(jí)師生到基地參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

車輛數(shù)()

載客量()

租金()

A

x

45x

400x

B

5-x

(2)若要保證租車費(fèi)用不超過1900元,求x的最大值;

(3)(2)的條件下,若七年級(jí)師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1,ACBDCE均為等邊三角形,當(dāng)DCE旋轉(zhuǎn)至點(diǎn)A,D,E在同一直線上,連接BE.

填空:① AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______

(2)拓展研究:

如圖2,ACBDCE均為等腰三角形,且∠ACB=DCE=90°,點(diǎn)A、D、E在同一直線上,若AE=15,DE=7,求AB的長(zhǎng)度.

(3)探究發(fā)現(xiàn):

1中的ACBDCE,在DCE旋轉(zhuǎn)過程中當(dāng)點(diǎn)A,D,E不在同一直線上時(shí),設(shè)直線ADBE相交于點(diǎn)O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案