【題目】如圖, 是等邊三角形內一點,將線段繞點順時針旋轉60°得到線段,連接.若,則四邊形的面積為____.

【答案】24+9

【解析】試題分析:如圖,連結PQ,根據(jù)等邊三角形的性質得∠BAC=60°,AB=AC,再根據(jù)旋轉的性質得AP=PQ=6,∠PAQ=60°,即可判定△APQ為等邊三角形,所以PQ=AP=6;在△APC△ABQ中,AB=AC∠CAP=∠BAQ,AP=PQ,利用SAS判定△APC≌△ABQ,根據(jù)全等三角形的性質可得PC=QB=10;在△BPQ中,已知PB2=82=64,PQ2=62,BQ2=102,即PB2+PQ2=BQ2,所以△PBQ為直角三角形,∠BPQ=90°,所以S四邊形APBQ=SBPQ+SAPQ=×6×8+×62=24+9

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某超市商店為了對某種商品促銷,將定價為3元的商品,以下列方式優(yōu)惠銷售:若購買不超過5件,按原價付款;若一次性購買5件以上,超過部分打八折.如果用27元錢,最多可以購買該商品( )件

A. 9B. 10C. 11D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將三角形各點的縱坐標都減去3,橫坐標保持不變,所得圖形與原圖形相比( )

A. 向右平移了3個單位長度B. 向左平移了3個單位長度

C. 向上平移了3個單位長度D. 向下平移了3個單位長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=kx+b與反比例函數(shù)y=x<0)的圖象交于點A(﹣1,m),與x軸交于點B(1,0)

(1)求m的值;

(2)求直線AB的解析式;

(3)若直線x=tt>1)與直線y=kx+b交于點M,與x軸交于點N,連接AN,SAMN=,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°.

(1)用尺規(guī)作圖作AB邊上的垂直平分線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明)

(2)連接BD,求證:DE=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】地球上的海洋面積約為36105.9萬平方千米,用科學記數(shù)法(保留三個有效數(shù)字)表示為平方千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )
A.菱形
B.對角線相互垂直的四邊形
C.正方形
D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求,商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Pa,a﹣2)在第四象限,則a的取值范圍是( 。

A、﹣2a0B、0a2

C、a2D、a0

查看答案和解析>>

同步練習冊答案