【題目】如圖,∠MON90°,已知△ABC中,ACBCAB6,△ABC的頂點A、B分別在邊OM、ON上,當點B在邊ON上運動時,A隨之在OM上運動,△ABC的形狀始終保持不變,在運動的過程中,點C到點O的距離為整數(shù)的點有( 。﹤.

A.5B.6C.7D.8

【答案】B

【解析】

AB的中點D.連接CD.根據(jù)三角形的邊角關系得到OC小于等于OD+DC,只有當O、DC共線時,OC取得最大值,最大值為OD+CD,根據(jù)DAB中點,得到BD3,根據(jù)三線合一得到CD垂直于AB,在Rt△BCD中,根據(jù)勾股定理求出CD的長,在Rt△AOB中,OD為斜邊AB上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得OD等于AB的一半,由AB的長求出OD的長,進而求出DC+OD的取值范圍.

如圖,取AB的中點D,連接CD

ACBCAB6

DAB邊中點,

BDAB3,

CD3

連接OD,OC,有OCOD+DC,

OD、C共線時,OC有最大值,最大值是OD+CD,

∵△AOB為直角三角形,D為斜邊AB的中點,

ODAB3,

OD+CD≤6

C到點O的距離為整數(shù)的點有6個,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ykx2x軸,y軸分別交于B,C兩點,其中OB1

1)求k的值;

2)若點Ax,y)是第一象限內(nèi)的直線ykx2上的一個動點,當點A運動過程中,試寫出AOB的面積Sx的函數(shù)關系式;

3)在(2)的條件下,探索:

①當點A運動到什么位置時,AOB的面積是1;

②在①成立的情況下,x軸上是否存在一點P,使POA是等腰三角形?若存在,請寫出滿足條件的所有P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,斜邊,的中點,以為圓心,線段的長為半徑畫圓心角為的扇形,弧經(jīng)過點,則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩枚均勻的小立方體(立方體的每個面上分別標有數(shù)字、、、).用小明擲立方體朝上的數(shù)字為,小明擲立方體朝上的數(shù)字為來確定點,則小明各擲一次所確定的點落在已知拋物線上的概率是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點所在平面內(nèi)一點,過點分別作于點,于點,交于點.

若點上(如圖①),此時,可得結(jié)論:.

請應用上述信息解決下列問題:

當點分別在內(nèi)(如圖②),外(如圖③)時,上述結(jié)論是否成立?若成立,請給予證明;若不成立,,,與之間又有怎樣的數(shù)量關系,請寫出你的猜想,不需要證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(點M不與B,C重合),CNDM,與AB交于點N,連接OM,ON,MN.下列四個結(jié)論:①△CNB≌△DMC;OM=ON;③△OMN∽△OAD;AN2+CM2=MN2,其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別是邊AD,BC的中點,連接DF,過點EEHDF,垂足為H,EH的延長線交DC于點G.

(1)猜想DGCF的數(shù)量關系,并證明你的結(jié)論;

(2)過點HMNCD,分別交AD,BC于點M,N,若正方形ABCD的邊長為10,點PMN上一點,求△PDC周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在第1中,;在邊上任取一點,延長,使,得到第2;在邊上任取一點,延長,使,得到第3按此做法繼續(xù)下去,則第個三角形中以為頂點的底角度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新能源汽車環(huán)保節(jié)能,越來越受到消費者的喜愛.各種品牌相繼投放市場.一汽貿(mào)公司經(jīng)銷某品牌新能源汽車.去年銷售總額為5000萬元,今年1~5月份,每輛車的銷售價格比去年降低1萬元.銷售數(shù)量與去年一整年的相同.銷售總額比去年一整年的少20%,今年1~5月份每輛車的銷售價格是多少萬元?設今年1~5月份每輛車的銷售價格為x萬元.根據(jù)題意,列方程正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案