【題目】1)請用直尺、圓規(guī)作圖,不寫作法,但要保留作圖痕跡.

已知:如圖,∠ABC,射線BC上一點D

求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等;

2)在(1)的條件下,若∠ABC60°,求等腰三角形△PBD頂角的度數(shù).

【答案】(1)詳見解析;(2)120°

【解析】

(1)根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.

(2)根據(jù)已知,由角平分線定理可得∠PBDABC30°,MN垂直平分線段BD,即PBPD,∠PBD=∠PDB30°,即可求得∠BPD的度數(shù).

解:(1)點P是∠ABC的平分線與線段BD的垂直平分線的交點,如圖點P即為所求;

2)∵∠ABC60°,BP平分∠ABC,

∴∠PBDABC30°

MN垂直平分線段BD,

PBPD,

∴∠PBD=∠PDB,

∴∠PBD=∠PDB30°

∴∠BPD180°30°30°120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸交于點,與軸交于、兩點,其中、是方程的兩根,且

)求拋物線的解析式;

)直線上是否存在點,使為直角三角形.若存在,求所有點坐標(biāo);反之說理;

)點軸上方的拋物線上的一個動點(點除外),連,若設(shè)的面積為 點橫坐標(biāo)為,則在何范圍內(nèi)時,相應(yīng)的點有且只有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖11,在平面直角坐標(biāo)系中,△OAB的頂點坐標(biāo)分別為O(0,0)、A(2,1)、B(1,-2)P(a,b)△OAB的邊AB上一點.

1)以原點O為位似中心,在y軸的右側(cè)畫出△OAB的一個位似△OA1B1 ,使它與△OAB的相似比為2:1,并分別寫出點AP的對應(yīng)點A1、P1的坐標(biāo);

2)畫出將△OAB向左平移2個單位,再向上平移1個單位后的△O2A2B2 ,并寫出點A、P的對應(yīng)點A2、P2的坐標(biāo);

3)判斷△OA1B1△O2A2B2 ,能否是關(guān)于某一點M為位似中心的位似圖形,若是,請在圖11中標(biāo)出位似中心M,并寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;

(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表給出了代數(shù)式﹣x2+bx+c與x的一些對應(yīng)值:

x

﹣2

﹣1

0

1

2

3

﹣x2+bx+c

5

n

c

2

﹣3

﹣10

(1)根據(jù)表格中的數(shù)據(jù),確定b,c,n的值;

(2)設(shè)y=﹣x2+bx+c,直接寫出0≤x≤2時y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點DDEAB,于點E

1)求證:△ACD≌△AED;

2)若∠B=30°,CD=1,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AFD=∠1,AC∥DE

(1)試說明:DF∥BC;

(2)若∠1=68°DF平分∠ADE,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,FCD上一點,EBF上一點,連接AEAC、DE.若AB=AC,AD=AE,∠BAC=DAE=70°AE平分∠BAC,則下列結(jié)論中:①ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)(a1)2-(1a)(-a1),其中 a;

(2)x1)(x2)+x(2x3)2,其中 x

查看答案和解析>>

同步練習(xí)冊答案