【題目】如圖,在△ABC中,∠C=90°,∠A=60°,點E,F(xiàn)分別在AB,AC上,把∠A沿著EF對折,使點A落在BC上的點D處.
(1)用尺規(guī)作圖的方法,在圖中找出點E,F(xiàn)的位置,并連接DE,DF(保留作圖痕跡,不要求寫作法);
(2)若ED⊥BC,求證:四邊形AEDF是菱形.
【答案】見解析
【解析】
(1)連接AD,作AD的垂直平分線交AB于點E,交AC于點F,點E,F(xiàn)即為所求;(2)根據(jù)已知條件易得DE∥AC,所以∠DFC=∠EDF=∠A=60°,再證明△AEF和△DEF都是等邊三角形,即可得DF=DE=EF=FA=AE,根據(jù)四條邊都相等的四邊形為菱形即可判定四邊形AEDF是菱形.
(1)如圖,點E、F為所作;
(2)證明:∵把∠A沿著EF對折,使點A落在BC上的點D處,
∴∠EDF=∠A=60°,∠AFE=∠DFE,
∵ED⊥BC,∠C=90°,
∴DE∥AC,
∴∠DFC=∠EDF=60°,
∴∠AFE=∠DFE=(180°﹣∠EFC)=(180°﹣60°)=60°,
∴△AEF和△DEF都是等邊三角形,
∴DF=DE=EF=FA=AE,
∴四邊形AEDF是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù),下列說法錯誤的是( )
A. 當(dāng)x<1時,y隨x的增大而減小
B. 若圖象與x軸有交點,則
C. 當(dāng) a=3時,不等式 的解集是
D. 若將圖象向上平移1個單位,再向左平移3個單位后過點 ,則 a=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使△PBQ的面積等于8cm2?
(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,每個小正方形邊長都是1.
(1)按要求作圖: △ABC關(guān)于軸對稱的圖形△;
(2)將點先向上平移個單位,再向右平移個單位得到點的坐標為 ;
(3)△的面積為 ;
(4)若為軸上一點,連接 ,則△周長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,MN=2,點A在⊙O上,∠AMN=30°,B為的中點,P是直徑MN上一動點,則PA+PB的最小值為( 。
A. B. C. 1 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等腰三角形OAB在直角坐標系中的位置如圖,點A的坐標為(-3,3),點B的坐標為(﹣6,0).
(1)若三角形OAB關(guān)于y軸的軸對稱圖形是三角形OA′B′,請直接寫出A、B的對稱點A′、B′的坐標;
(2)若將三角形OAB沿x軸向右平移a個單位,此時點A恰好落在反比例函數(shù)y=的圖象上,求a的值;
(3)若三角形OAB繞點O按逆時針方向旋轉(zhuǎn)α度(0<α<90).
①當(dāng)α=30°時點B恰好落在反比例函數(shù)y=的圖象上,求k的值;
②問點A、B能否同時落在①中的反比例函數(shù)的圖象上,若能,求出α的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a,b,c表示三條公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com