【題目】如圖在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)如AF=3,AG=5,求△ADE與△ABC的周長之比.
【答案】(1)△ADE∽△ABC;(2).
【解析】
(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,從而可證明∠AED=∠ACB,進(jìn)而可證明△ADE∽△ABC;
(2)依據(jù)△ADE∽△ABC,利用相似三角形的周長之比等于對(duì)應(yīng)高之比,即可得到結(jié)論.
(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°.
∵∠EAF=∠GAC,∴∠AED=∠ACB.
∵∠EAD=∠BAC,∴△ADE∽△ABC;
(2)由(1)可得:△ADE∽△ABC.
又∵AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∴△ADE與△ABC的周長之比==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OBDC的對(duì)角線相交于點(diǎn)E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點(diǎn)B.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騰飛中學(xué)在教學(xué)樓前新建了一座“騰飛”雕塑(如圖①).為了測(cè)量雕塑的高度,小明利用三角板測(cè)得雕塑頂端A點(diǎn)的仰角為30°,底部B點(diǎn)的俯角為45°,小華在五樓找到一點(diǎn)D,利用三角板測(cè)得A點(diǎn)的俯角為60°(如圖②).若已知CD為10米,請(qǐng)求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)=1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化工材料經(jīng)銷公司購進(jìn)一種化工材料若干千克,價(jià)格為每千克40元,物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克70元,不低于每千克40元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),日銷量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=70時(shí),y=80;x=60時(shí),y=100.在銷售過程中,每天還要支付其他費(fèi)用350元.
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+3與x軸交于A.B兩點(diǎn),過點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).
(1)求拋物線的解析式;
(2)在(1)中拋物線的對(duì)稱軸上是否存在點(diǎn)D,使△BCD的周長最小?若存在,求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對(duì)角互補(bǔ)的四邊形叫做互補(bǔ)四邊形,如圖,在互補(bǔ)四邊形紙片ABCD中,BA=BC,AD=CD,∠A=∠C=90°,∠ADC=30°.將紙片先沿直線BD對(duì)折,再將對(duì)折后的紙片從一個(gè)頂點(diǎn)出發(fā)的直線裁剪,把剪開的紙片打開后鋪平,若鋪平后的紙片中有一個(gè)面積為4的平行四邊形,則CD的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足,連接AF并延長交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正確的是 (寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一副三角板擺放在一起,組成四邊形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,連接BD,則tan∠CBD的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣1)2+4的圖象經(jīng)過點(diǎn)(﹣1,0).
(1)求這個(gè)二次函數(shù)的解析式;
(2)判斷這個(gè)二次函數(shù)的開口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com