【題目】如圖,數(shù)軸的單位長(zhǎng)度為1,如果P,Q表示的數(shù)互為相反數(shù),那么圖中的4個(gè)點(diǎn)中,哪一個(gè)點(diǎn)表示的數(shù)的平方值最大( 。

A. P B. R C. Q D. T

【答案】D

【解析】

由于點(diǎn)P,Q表示的數(shù)是互為相反數(shù),根據(jù)相反數(shù)的定義易得點(diǎn)P表示的數(shù)為2.5,Q點(diǎn)表示的數(shù)為2.5,則點(diǎn)R表示的數(shù)為0.5,T點(diǎn)表示的數(shù)為3.5,然后求出各數(shù)的平方即可確定正確答案

∵點(diǎn)P,Q表示的數(shù)是互為相反數(shù),

PQ=5,

∴點(diǎn)P表示的數(shù)為2.5,Q點(diǎn)表示的數(shù)為2.5,

∴點(diǎn)R表示的數(shù)為0.5,T點(diǎn)表示的數(shù)為3.5,

2.52=6.25,(2.5)2=6.25,(0.5)2=0.25,3.52=12.25,

∴表示的數(shù)的平方值最大的點(diǎn)是T.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,劉星同學(xué)觀察得出了下面四條信息:
①b2﹣4ac>0;②c>1;③2a﹣b<0;④a+b+c<0.你認(rèn)為其中錯(cuò)誤的有(

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.
(1)請(qǐng)直接寫出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?
(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解放中學(xué)為了了解學(xué)生對(duì)新聞、體育、動(dòng)畫(huà)、娛樂(lè)四類電視節(jié)目的喜愛(ài)程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所給的信息解答下列問(wèn)題.

(1)喜愛(ài)動(dòng)畫(huà)的學(xué)生人數(shù)和所占比例分別是多少?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計(jì)該校喜歡體育的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD,ADBC,ABBC,AD=1,AB=2,BC=3.

(1)如圖1,若PAB邊上一點(diǎn)以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.

(2)若PAB邊上任意一點(diǎn),延長(zhǎng)PDE,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)直接寫出最小值,如果不存在,請(qǐng)說(shuō)明理由.

(3)如圖2,若P為直線DC上任意一點(diǎn),延長(zhǎng)PAE,使AE=AP,以PE、PB為邊作平行四邊形PBQE,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上的一點(diǎn),點(diǎn)C是 的中點(diǎn),弦CM垂直AB于點(diǎn)F,連接AD,交CF于點(diǎn)P,連接BC,∠DAB=30°.

(1)求∠ABC的度數(shù);
(2)若CM=4 ,求 的長(zhǎng)度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的三個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(5,0),B(2,4)

(1)OAB的面積;

(2)OA兩點(diǎn)的位置不變,P點(diǎn)在什么位置時(shí),OAP的面積是OAB面積的2倍?

(3)B(2,4),O(00)不變,M點(diǎn)在x軸上,M點(diǎn)在什么位置時(shí),OBM的面積是OAB面積的2倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見(jiàn)的數(shù)學(xué)問(wèn)題,中國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法——更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也,以等數(shù)約之.”意思是說(shuō),要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).例如:求91與56的最大公約數(shù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(n,-2),B(1,4)是一次函數(shù) y=kx+b的圖象和反比例函數(shù) 的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)觀察圖象,直接寫出反比例函數(shù)值大于一次函數(shù)值x取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案