【題目】如圖,以A(0, )為圓心的圓與x軸相切于坐標(biāo)原點O,與y軸相交于點B,弦BD的延長線交x軸的負(fù)半軸于點E,且∠BEO=60°,AD的延長線交x軸于點C

(1)分別求點EC的坐標(biāo);

(2)求經(jīng)過A、C兩點,且以過E而平行于y軸的直線為對稱軸的拋物線的函數(shù)解析式;

(3)設(shè)拋物線的對稱軸與AC的交點為M,試判斷以M點為圓心,ME為半徑的圓與⊙A的位置關(guān)系,并說明理由.

【答案】(1)點C的坐標(biāo)為(-3,0)(2)(3)⊙M與⊙A外切

【解析】試題分析:(1)已知了A點的坐標(biāo),即可得出圓的半徑和直徑,可在直角三角形BOE中,根據(jù)BEO和OB的長求出OE的長進(jìn)而可求出E點的坐標(biāo),同理可在直角三角形OAC中求出C點的坐標(biāo);

(2)已知了對稱軸的解析式,可據(jù)此求出C點關(guān)于對稱軸對稱的點的坐標(biāo),然后根據(jù)此點坐標(biāo)以及C,A的坐標(biāo)用待定系數(shù)法即可求出拋物線的解析式;

(3)兩圓應(yīng)該外切,由于直線DEOB,因此∠MED=∠ABD,由于AB=AD,那么∠ADB=∠ABD,將相等的角進(jìn)行置換后可得出∠MED=∠MDE,即ME=MD,因此兩圓的圓心距AM=ME+AD,即兩圓的半徑和,因此兩圓外切.

試題解析:(1)在Rt△EOB中,

∴點E的坐標(biāo)為(-2,0).

在Rt△COA中,

∴點C的坐標(biāo)為(-3,0).

(2)∵點C關(guān)于對稱軸對稱的點的坐標(biāo)為F(-1,0),

 點C與點F(-1,0)都在拋物線上.

 設(shè),用代入得

,

.  

,即

(3)⊙M與⊙A外切,證明如下:

MEy軸,

,

∴⊙M與⊙A外切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖,回答下列問題:

1本次調(diào)查學(xué)生共 人, = ,并將條形圖補(bǔ)充完整;

2如果該校有學(xué)生2000人,請你估計該校選擇跑步這種活動的學(xué)生約有多少人?

3學(xué)校讓每班在AB、C、D四鐘活動形式中,隨機(jī)抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是跑步跳繩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,ABCD四個頂點的坐標(biāo)分別為A(1,1),B(4,1),C(5,2),D(2,2),直線l:y=kx+b與直線y=﹣2x平行.

(1)k=;
(2)若直線l過點D,求直線l的解析式;
(3)若直線l同時與邊AB和CD都相交,求b的取值范圍;
(4)若直線l沿線段AC從點A平移至點C,設(shè)直線l與x軸的交點為P,問是否存在一點P,使△PAB為等腰三角形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算a6×(a2)3÷a4的結(jié)果是( 。

A. a3 B. a7 C. a8 D. a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.

(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程x+2y=1,用含y的代數(shù)式表示x,得x=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.

(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, 、 均在邊長為1的正方形網(wǎng)格格點上.

(1)在網(wǎng)格的格點中,找一點C,使△ABC是直角三角形,且三邊長均為無理數(shù)(只畫出一個,并涂上陰影);
(2)若點P在圖中所給網(wǎng)格中的格點上,△APB是等腰三角形,滿足條件的點P共有個;
(3)若將線段AB繞點A順時針旋轉(zhuǎn)90°,寫出旋轉(zhuǎn)后點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將等腰直角△ABC斜放在平面直角坐標(biāo)系中,使直角頂點C與點(1,0)重合,點A的坐標(biāo)為(﹣2,1).

(1)求△ABC的面積S;
(2)求直線AB與y軸的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案