【題目】如圖,在△ABC中,ABAC10cm,BDAC于點D,BD8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQAC,直線PQAB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0t5).線段CM的長度記作y,線段BP的長度記作yyy關于時間t的函數(shù)變化情況如圖所示.

1)由圖2可知,點M的運動速度是每秒  cm;當t  秒時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是  (并寫出此點的坐標);

2)設四邊形PQCM的面積為ycm2,求yt之間的函數(shù)關系式;

3)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.

【答案】12,,E,);(2yt28t+40;(3)存在,ts時,點M在線段PC的垂直平分線上.

【解析】

1)先由圖2判斷出點M的速度為2cm/s,PQ的運動速度為1cm/s,再由四邊形PQCM為平行四邊形,根據平行四邊形的性質得到對邊平行,進而得到AP=AM,列出關于t的方程,求出方程的解得到滿足題意t的值;
2)根據PQAC可得PBQ∽△ABC,根據相似三角形的形狀必然相同可知BPQ也為等腰三角形,即BP=PQ=t,再用含t的代數(shù)式就可以表示出BF,進而得到梯形的高PE=DF=8-t,又點M的運動速度和時間可知點M走過的路程AM=2t,所以梯形的下底CM=10-2t.最后根據梯形的面積公式即可得到yt的關系式;
3)假設存在,則根據垂直平分線上的點到線段兩端點的距離相等即可得到MP=MC,過點MMH垂直AB,由一對公共角的相等和一對直角的相等即可得到AHM∽△ADB,由相似得到對應邊成比例進而用含t的代數(shù)式表示出AHHM的長,再由AP的長減AH的長表示出PH的長,從而在直角三角形PHM中根據勾股定理表示出MP的平方,再由AC的長減AM的長表示出MC的平方,根據兩者的相等列出關于t的方程進而求出t的值.

1)由圖2得,點M的運動速度為2cm/sPQ的運動速度為1cm/s,

∵四邊形PQCM是平行四邊形,則PMQC,

APABAMAC,

ABAC,

APAM,即10t2t,

解得:t,

∴當t時,四邊形PQCM是平行四邊形,此時,圖2中反映這一情況的點是E,

故答案為:2,E,).

2)∵PQAC,

∴△PBQ∽△ABC

∴△PBQ為等腰三角形,PQPBt,

,即

解得:BFt

FDBDBF8t,

又∵MCACAM102t

yPQ+MCFDt+102t)(8t)=t28t+40

3)假設存在某一時刻t,使得M在線段PC的垂直平分線上,則MPMC

MMHAB,交ABH,如圖所示:

∵∠A=∠A,∠AHM=∠ADB90°

∴△AHM∽△ADB,

又∵AD6,

HMt,AHt,

HP10tt10t

RtHMP中,MP2=(t2+10t2t244t+100,

又∵MC2=(102t210040t+4t2,

MP2MC2

t244t+10010040t+4t2,

解得 t1,t20(舍去),

ts時,點M在線段PC的垂直平分線上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線經過坐標原點.

1)求拋物線的解析式和頂點B的坐標;

2)設點A是拋物線與x軸的另一個交點且A、C兩點關于y軸對稱,試在y軸上確定一點P,使PA+PB最短,并求出點P的坐標;

3)過點AADBPy軸于點D,求到直線APAD、CP距離相等的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解中學生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨機抽取了名學生進行調查統(tǒng)計(要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目),并將調查結果繪制成如圖統(tǒng)計圖表:

節(jié)目

人數(shù)()

百分比

最強大腦

朗讀者

中國詩詞大會

出彩中國人

根據以上提供的信息.解答下列問題:

, ;

補全上面的條形統(tǒng)計圖;

名女同學.其余為男同學,現(xiàn)要從中隨機抽取名同學代表學校參加市里組織的競賽活動,請求出所抽取的名同學恰好是名男同學和名女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,點在邊上,,將沿對折至,延長交邊于點,連接,.給出以下結論:①;②;③;④.其中所有正確結論的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是    ;

(2)若從支援的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ABy軸交于點,與反比例函數(shù)在第二象限內的圖象相交于點

1)求直線AB的解析式;

2)將直線AB向下平移9個單位后與反比例函數(shù)的圖象交于點C和點E,與y軸交于點D,求的面積;

3)設直線CD的解析式為,根據圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度圖中線段MN的長,直線MN垂直于地面,垂足為點在地面A處測得點M的仰角為、點N的仰角為,在B處測得點M的仰角為,米,且A、BP三點在一直線上請根據以上數(shù)據求廣告牌的寬MN的長.

參考數(shù)據:,,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直線y1=﹣x+4,y2x+b都與雙曲線y交于點A(1,3),這兩條直線分別與x軸交于B,C兩點.

1)求k的值;

2)直接寫出當x0時,不等式x+b的解集;

3)若點Px軸上,連接AP,且AP把△ABC的面積分成12兩部分,則此時點P的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線.作BMAB并與AP交于點 M,延長MBAC于點E,交⊙O于點D,連接AD、BC

1)求證:ABBE

2)若BE3,OC,求BC的長.

查看答案和解析>>

同步練習冊答案