【題目】在平面直角坐標(biāo)系中,將坐標(biāo)是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的點(diǎn)用線段依次連接起來(lái)形成一個(gè)圖案Ⅰ.
(1)作出該圖案關(guān)于y軸對(duì)稱的圖案Ⅱ;
(2)將所得到的圖案Ⅱ沿x軸向上翻折180°后得到一個(gè)新圖案Ⅲ,試寫出它的各頂點(diǎn)的坐標(biāo);
(3)觀察圖案Ⅰ與圖案Ⅲ,比較各頂點(diǎn)的坐標(biāo)和圖案位置,你能得到什么結(jié)論?
【答案】(1)作圖見解析;(2)作圖見解析,(5,0),(4,2),(3,0),(2,2),(1,0);(3)詳見解析.
【解析】
(1)作出各點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),順次連接各點(diǎn)即可;
(2)作出圖案II關(guān)于x軸的對(duì)稱圖形,并寫出各點(diǎn)坐標(biāo)即可;
(3)由圖案I與圖案Ⅲ的位置即可得出結(jié)論.
圖案Ⅰ如圖.
(1)作出圖案Ⅱ如圖.
(2)作出圖案Ⅲ如圖.圖案Ⅲ各個(gè)頂點(diǎn)的坐標(biāo)分別為(5,0),(4,2),(3,0),(2,2),(1,0).
(3)觀察圖案Ⅰ與圖案Ⅲ,不難發(fā)現(xiàn):①?gòu)母黜旤c(diǎn)坐標(biāo)看,橫、縱坐標(biāo)均互為相反數(shù);②從圖案的位置上看,圖案Ⅰ在第三象限,圖案Ⅲ在第一象限,二者關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是2002年北京第24屆國(guó)際數(shù)學(xué)家大會(huì)會(huì)徽,由4個(gè)全等的直角三角形拼合而成,如果大正方形的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長(zhǎng)直角邊為b,那么(a+b)2的值為( )
A.13
B.19
C.25
D.169
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:
當(dāng)均為正整數(shù)時(shí),若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A(﹣1,0)、B(3,0)兩點(diǎn),交y軸于點(diǎn)C,連接BC,動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從A向B運(yùn)動(dòng),動(dòng)點(diǎn)Q以每秒 個(gè)單位長(zhǎng)度的速度從B向C運(yùn)動(dòng),P、Q同時(shí)出發(fā),連接PQ,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求二次函數(shù)的解析式;
(2)如圖1,當(dāng)△BPQ為直角三角形時(shí),求t的值;
(3)如圖2,過(guò)點(diǎn)Q作QN⊥x軸于N,交拋物線于點(diǎn)M,連結(jié)MC,MB,當(dāng)t為何值時(shí),△MCB的面積最大,并求出此時(shí)點(diǎn)M的坐標(biāo)和△MCB面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a、b、c滿足a+b=ab=c,有下列結(jié)論:
①若c≠0,則;②若a=3,則b+c=9;
③若a=b=c,則abc=0;④若a、b、c中只有兩個(gè)數(shù)相等,則a+b+c=8.
其中正確的是 (把所有正確結(jié)論的序號(hào)都選上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是以原點(diǎn)為圓心,2為半徑的圓,點(diǎn)P是直線y=﹣x+4上的一點(diǎn),過(guò)點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長(zhǎng)PQ的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com